ON A ONE-PHASE FREE BOUNDARY PROBLEM

被引:0
|
作者
Avelin, Benny [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
One-phase; free boundary; NTA; non-divergence; linear; DOMAINS;
D O I
10.5186/aasfm.2013.3815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend a result regarding the free boundary regularity in a one-phase problem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order. Roughly speaking we prove that the free boundary is given by a Lipschitz graph.
引用
下载
收藏
页码:181 / 191
页数:11
相关论文
共 50 条
  • [1] Boundary regularity for the free boundary in the one-phase problem
    Chang-Lara, Hector
    Savin, Ovidiu
    NEW DEVELOPMENTS IN THE ANALYSIS OF NONLOCAL OPERATORS, 2019, 723 : 149 - 165
  • [2] Local solvability of a one-phase problem with free boundary
    Selivanova N.Y.
    Shamolin M.V.
    Journal of Mathematical Sciences, 2013, 189 (2) : 274 - 283
  • [3] Minimizers for the Thin One-Phase Free Boundary Problem
    Engelstein, Max
    Kauranen, Aapo
    Prats, Marti
    Sakellaris, Georgios
    Sire, Yannick
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) : 1971 - 2022
  • [4] Almost minimizers of the one-phase free boundary problem
    De Silva, D.
    Savin, O.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (08) : 913 - 930
  • [5] Nondegeneracy for stable solutions to the one-phase free boundary problem
    Nikola Kamburov
    Kelei Wang
    Mathematische Annalen, 2024, 388 : 2705 - 2726
  • [6] Nondegeneracy for stable solutions to the one-phase free boundary problem
    Kamburov, Nikola
    Wang, Kelei
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2573 - 2610
  • [7] One-phase parabolic free boundary problem in a convex ring
    M. Poghosyan
    R. Teymurazyan
    Journal of Contemporary Mathematical Analysis, 2009, 44 : 192 - 204
  • [8] Inhomogeneous global minimizers to the one-phase free boundary problem
    De Silva, Daniela
    Jerison, David
    Shahgholian, Henrik
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (06) : 1193 - 1216
  • [9] One-phase parabolic free boundary problem in a convex ring
    Poghosyan, M.
    Teymurazyan, R.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2009, 44 (03): : 192 - 204
  • [10] Regularity in a one-phase free boundary problem for the fractional Laplacian
    De Silva, D.
    Roquejoffre, J. M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (03): : 335 - 367