Decreasing behavior of the depth functions of edge ideals

被引:0
|
作者
Ha Thi Thu Hien
Ha Minh Lam
Ngo Viet Trung
机构
[1] Foreign Trade University,Institute of Mathematics
[2] Vietnam Academy of Science and Technology,undefined
来源
关键词
Graph; Ear decomposition; Dominating set; Independent set; Degree complex; Edge ideal; Ideal power; Symbolic power; Depth; 13C15; 13C70; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let I be the edge ideal of a connected non-bipartite graph and R the base polynomial ring. Then, depthR/I≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I \ge 1$$\end{document} and depthR/It=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^t = 0$$\end{document} for t≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \gg 1$$\end{document}. This paper studies the problem when depthR/It=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^t = 1$$\end{document} for some t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document} and whether the depth function is non-increasing thereafter. Furthermore, we are able to give a simple combinatorial criterion for depthR/I(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^{(t)} = 1$$\end{document} for t≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \gg 1$$\end{document} and show that the condition depthR/I(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^{(t)} = 1$$\end{document} is persistent, where I(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^{(t)}$$\end{document} denotes the t-th symbolic powers of I.
引用
收藏
页码:37 / 53
页数:16
相关论文
共 50 条
  • [1] Decreasing behavior of the depth functions of edge ideals
    Hien, Ha Thi Thu
    Lam, Ha Minh
    Trung, Ngo Viet
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 37 - 53
  • [2] The behavior of depth functions of cover ideals of unimodular hypergraphs
    Nguyen Thu Hang
    Tran Nam Trung
    [J]. ARKIV FOR MATEMATIK, 2017, 55 (01): : 89 - 104
  • [3] STANLEY DEPTH OF EDGE IDEALS
    Ishaq, Muhammad
    Qureshi, Muhammad Imran
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (04) : 501 - 508
  • [4] On the depth of binomial edge ideals of graphs
    Malayeri, M. Rouzbahani
    Madani, S. Saeedi
    Kiani, D.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 827 - 846
  • [5] On the depth of binomial edge ideals of graphs
    M. Rouzbahani Malayeri
    S. Saeedi Madani
    D. Kiani
    [J]. Journal of Algebraic Combinatorics, 2022, 55 : 827 - 846
  • [6] On the Stanley depth of powers of edge ideals
    Fakhari, S. A. Seyed
    [J]. JOURNAL OF ALGEBRA, 2017, 489 : 463 - 474
  • [7] On the Depth of Generalized Binomial Edge Ideals
    Anuvinda, J.
    Mehta, Ranjana
    Saha, Kamalesh
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (05)
  • [8] Binomial edge ideals of small depth
    Malayeri, Mohammad Rouzbahani
    Madani, Sara Saeedi
    Kiani, Dariush
    [J]. JOURNAL OF ALGEBRA, 2021, 572 : 231 - 244
  • [9] NONINCREASING DEPTH FUNCTIONS OF MONOMIAL IDEALS
    Matsuda, Kazunori
    Suzuki, Tao
    Tsuchiya, Akiyoshi
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (02) : 505 - 511
  • [10] DEPTH FUNCTIONS OF POWERS OF HOMOGENEOUS IDEALS
    Huy Tai Ha
    Hop Dang Nguyen
    Ngo Viet Trung
    Tran Nam Trung
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 1837 - 1844