Compactness Characterizations of Commutators on Ball Banach Function Spaces

被引:0
|
作者
Jin Tao
Dachun Yang
Wen Yuan
Yangyang Zhang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
来源
Potential Analysis | 2023年 / 58卷
关键词
Ball Banach function space; Commutator; Convolutional singular integral operator; BMO; CMO; Extrapolation; Fréchet–Kolmogorov theorem; Primary 47B47; Secondary 42B20; 42B25; 42B30; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball Banach function space on ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^{n}$\end{document}. Let Ω be a Lipschitz function on the unit sphere of ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^{n}$\end{document}, which is homogeneous of degree zero and has mean value zero, and let TΩ be the convolutional singular integral operator with kernel Ω(⋅)/|⋅|n. In this article, under the assumption that the Hardy–Littlewood maximal operator M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{M}}$\end{document} is bounded on both X and its associated space, the authors prove that the commutator [b, TΩ] is compact on X if and only if b∈CMO(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b\in \text {CMO }({\mathbb R}^{n})$\end{document}. To achieve this, the authors mainly employ three key tools: some elaborate estimates, given in this article, on the norm of X about the commutators and the characteristic functions of some measurable subsets, which are implied by the assumed boundedness of ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal M}$\end{document} on X and its associated space as well as the geometry of ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb R^{n}$\end{document}; the complete John–Nirenberg inequality in X obtained by Y. Sawano et al.; the generalized Fréchet–Kolmogorov theorem on X also established in this article. All these results have a wide range of applications. Particularly, even when X:=Lp(⋅)(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X:=L^{p(\cdot )}({\mathbb R}^{n})$\end{document} (the variable Lebesgue space), X:=Lp→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X:=L^{\vec {p}}({\mathbb R}^{n})$\end{document} (the mixed-norm Lebesgue space), X:=LΦ(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X:=L^{\Phi }({\mathbb R}^{n})$\end{document} (the Orlicz space), and X:=(EΦq)t(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X:=(E_{\Phi }^{q})_{t}({\mathbb R}^{n})$\end{document} (the Orlicz-slice space or the generalized amalgam space), all these results are new.
引用
收藏
页码:645 / 679
页数:34
相关论文
共 50 条
  • [1] Compactness Characterizations of Commutators on Ball Banach Function Spaces
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    POTENTIAL ANALYSIS, 2023, 58 (04) : 645 - 679
  • [2] Compactness of commutators of fractional integral operators on ball Banach function spaces
    Yang, Heng
    Zhou, Jiang
    AIMS MATHEMATICS, 2024, 9 (02): : 3126 - 3149
  • [3] Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces
    Tao, Jin
    Yang, Dachun
    Yang, Dongyong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1631 - 1651
  • [4] Intrinsic Square Functions and Commutators on Generalized Morrey Spaces Associated with Ball Banach Function Spaces
    Liu, Ronghui
    He, Suixin
    ANALYSIS IN THEORY AND APPLICATIONS, 2024, 40 (04): : 335 - 350
  • [5] Extrapolation of Compactness on Banach Function Spaces
    Lorist, Emiel
    Nieraeth, Zoe
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (03)
  • [6] Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces
    Yan, Xianjie
    Yang, Dachun
    Yuan, Wen
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) : 769 - 806
  • [7] Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces
    Xianjie Yan
    Dachun Yang
    Wen Yuan
    Frontiers of Mathematics in China, 2020, 15 : 769 - 806
  • [8] Characterizations of Function Spaces via Boundedness of Commutators
    Shanzhen Lu
    Shaoguang Shi
    Analysis in Theory and Applications, 2016, 32 (03) : 291 - 302
  • [9] COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES
    Agcayazi, Mujdat
    Zhang, Pu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1391 - 1408
  • [10] Boundedness and compactness characterizations of Riesz transform commutators on Morrey spaces in the Bessel setting
    Mao, Suzhen
    Wu, Huoxiong
    Yang, Dongyong
    ANALYSIS AND APPLICATIONS, 2019, 17 (01) : 145 - 178