Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces

被引:51
|
作者
Tao, Jin [1 ]
Yang, Dachun [1 ]
Yang, Dongyong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
boundedness; Cauchy integral; compactness; commutator; Morrey space; RIESZ TRANSFORMS; HARDY SPACES; FACTORIZATION; VMO;
D O I
10.1002/mma.5462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C-Gamma be the Cauchy integral operator on a Lipschitz curve Gamma. In this article, the authors show that the commutator [b,C-Gamma] is bounded (resp, compact) on the Morrey space Lp,lambda(R) for any (or some) p is an element of (1,infinity) and lambda is an element of (0,1) if and only if b is an element of BMO(R) (resp, CMO(R)). As an application, a factorization of the classical Hardy space H1(R) in terms of C-Gamma and its adjoint operator is obtained.
引用
收藏
页码:1631 / 1651
页数:21
相关论文
共 50 条