On the fractional integral inclusions having exponential kernels for interval-valued convex functions

被引:0
|
作者
Taichun Zhou
Zhengrong Yuan
Tingsong Du
机构
[1] China Three Gorges University,Department of Mathematics, College of Science
[2] China Three Gorges University,Three Gorges Mathematical Research Center
来源
Mathematical Sciences | 2023年 / 17卷
关键词
Fractional integrals; Interval-valued functions; Hermite–Hadamard’s inequality; 65G40; 28B20; 26A33; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the present paper is to establish certain fractional integral inclusions having exponential kernels, which are related to the Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte type inequalities. These results allow us to obtain a new class of inclusions which can be viewed as some substantial generalizations of the previously reported results. Also, the graphical representations for the results are utilized to identify the correctness of the investigated inclusion relations that occur with the change of the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
引用
收藏
页码:107 / 120
页数:13
相关论文
共 50 条
  • [21] Some integral inequalities for interval-valued functions
    Roman-Flores, H.
    Chalco-Cano, Y.
    Lodwick, W. A.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1306 - 1318
  • [22] On Properties of the Choquet Integral of Interval-Valued Functions
    Jang, Lee-Chae
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [23] ON RSU INTEGRAL OF INTERVAL-VALUED FUNCTIONS AND FUZZY-VALUED FUNCTIONS
    WU, CX
    LIU, HS
    [J]. FUZZY SETS AND SYSTEMS, 1993, 55 (01) : 93 - 106
  • [24] Some integral inequalities for interval-valued functions
    H. Román-Flores
    Y. Chalco-Cano
    W. A. Lodwick
    [J]. Computational and Applied Mathematics, 2018, 37 : 1306 - 1318
  • [25] Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. AIMS MATHEMATICS, 2022, 7 (06): : 10454 - 10482
  • [26] On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space
    Alqudah, Manar A.
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Raees, Muhammad
    Abdeljawad, Thabet
    Anwar, Matloob
    Hamed, Y. S.
    [J]. AIMS MATHEMATICS, 2021, 6 (05): : 4638 - 4663
  • [27] Some integral inequalities for coordinated log-h-convex interval-valued functions
    Shi, Fangfang
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 156 - 170
  • [28] Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting
    Stojiljkovic, Vuk
    Ramaswamy, Rajagopalan
    Abdelnaby, Ola A. Ashour
    Radenovic, Stojan
    [J]. MATHEMATICS, 2022, 10 (19)
  • [29] On new fractional integral inequalities for p-convexity within interval-valued functions
    Thabet Abdeljawad
    Saima Rashid
    Hasib Khan
    Yu-Ming Chu
    [J]. Advances in Difference Equations, 2020
  • [30] NEW FRACTIONAL INTEGRAL INEQUALITIES FOR LR-h-PREINVEX INTERVAL-VALUED FUNCTIONS
    Tan, Yun
    Zhao, Dafang
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (05)