In this article we consider positive large solution of cooperative systems of the form −Δu1=λ1u1+a1u1u2q1−b1(x)u1p1+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-{\Delta}u_1=\lambda_{1}u_{1}+a_{1}u_{1}u_{2}^{q_{1}}-b_1(x)u_{1}^{p_{1}+1}$$\end{document}, −Δu2=λ2u2+a2u1q2u2−b2(x)u2p2+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-{\Delta}u_2=\lambda_{2}u_{2}+a_{2}u_{1}^{q_{2}}u_{2}-b_2(x)u_{2}^{p_{2}+1}$$\end{document} in a bounded smooth domain Ω ⊂ RN(λi ∈ R, ai, bi > 0, 0 < qi < pj, i, j ∈ {1, 2}, i ≠ j), Based on the construction of certain sup and sub-solution, we show existence, uniqueness and blow-up rate of the large solution.