Control of a three-dimensional turbulent shear layer by means of oblique vortices

被引:0
|
作者
Werner Jürgens
Hans-Jakob Kaltenbach
机构
[1] Technische Universität Berlin,Institut für Strömungsmechanik und Technische Akustik (ISTA)
[2] Technische Hochschule Mittelhessen (THM),Fachbereich MND
[3] University of Applied Sciences,Fachgebiet Strömungsbeeinflussung und Aeroakustik, Fakultät Maschinenwesen
[4] Technische Universität München,undefined
关键词
Backward-facing step; Sweep; Three-dimensional flows; Free shear layers; Flow control; Large-eddy simulation;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40^\circ $$\end{document}. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50^\circ $$\end{document} from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρu′v′¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\rho \overline{u'v'}$$\end{document}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.
引用
收藏
页码:179 / 199
页数:20
相关论文
共 50 条
  • [21] Three-dimensional turbulent boundary layer in a shrouded rotating system
    Poncet, Sebastien
    Randriamampianina, Anthony
    [J]. FLOW TURBULENCE AND COMBUSTION, 2008, 80 (01) : 107 - 117
  • [22] Three-dimensional Turbulent Boundary Layer in a Shrouded Rotating System
    Sébastien Poncet
    Anthony Randriamampianina
    [J]. Flow, Turbulence and Combustion, 2008, 80 : 107 - 117
  • [23] Evolution of turbulent boundary layer over a three-dimensional bump
    Jun LIU
    Daniele FISCALETTI
    Huacheng YUAN
    [J]. Chinese Journal of Aeronautics, 2022, 35 (06) : 137 - 145
  • [24] Oblique impact of an elongated three-dimensional body on a thin liquid layer
    Batyaev, E. A.
    Khabakhpasheva, T. I.
    [J]. JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2016, 57 (01) : 163 - 172
  • [25] Evolution of turbulent boundary layer over a three-dimensional bump
    Liu, Jun
    Fiscaletti, Daniele
    Yuan, Huacheng
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (06) : 137 - 145
  • [26] Turbulent structure in the three-dimensional boundary layer on a swept wing
    Itoh, M
    Kobayashi, M
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2000, 21 (03) : 271 - 277
  • [27] Three-dimensional turbulent boundary layer in an ''S''-shaped duct
    Bruns, JM
    Fernholz, HH
    Truong, TV
    [J]. ADVANCES IN TURBULENCES VI, 1996, 36 : 429 - 432
  • [28] Oblique impact of an elongated three-dimensional body on a thin liquid layer
    E. A. Batyaev
    T. I. Khabakhpasheva
    [J]. Journal of Applied Mechanics and Technical Physics, 2016, 57 : 163 - 172
  • [29] Modification of near-wall turbulence structure in a shear-driven three-dimensional turbulent boundary layer
    Kiesow, RO
    Plesniak, MW
    [J]. EXPERIMENTS IN FLUIDS, 1998, 25 (03) : 233 - 242
  • [30] Near-wall physics of a shear-driven three-dimensional turbulent boundary layer with varying crossflow
    Kiesow, RO
    Plesniak, MW
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 484 : 1 - 39