A mixed finite element method with Lagrange multipliers for nonlinear exterior transmission problems

被引:0
|
作者
Rommel Bustinza
Galina C. Garcia
Gabriel N. Gatica
机构
[1] Universidad de Concepción,GI2MA, Departamento de Ingenierí a Matemática
来源
Numerische Mathematik | 2004年 / 96卷
关键词
Lagrange Multiplier; Continuous Formulation; Discrete Solution; Transmission Problem; Explicit Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We apply a mixed finite element method to numerically solve a class of nonlinear exterior transmission problems in R2 with inhomogeneous interface conditions. Besides the usual unknowns required for the dual-mixed method, which include the gradient of the temperature in this nonlinear case, our approach makes use of the trace of the outer solution on the transmission boundary as a suitable Lagrange multiplier. In addition, we use a boundary integral operator to reduce the original transmission problem on the unbounded region into a nonlocal one on a bounded domain. In this way, we are lead to a two-fold saddle point operator equation as the resulting variational formulation. We prove that the continuous formulation and the associated Galerkin scheme defined with Raviart-Thomas spaces are well posed, and derive the a-priori estimates and the corresponding rate of convergence. Then, we introduce suitable local problems and deduce first an implicit reliable and quasi-efficient a-posteriori error estimate, and then a fully explicit reliable one. Finally, several numerical results illustrate the effectivity of the explicit estimate for the adaptive computation of the discrete solutions.
引用
收藏
页码:481 / 523
页数:42
相关论文
共 50 条
  • [41] FINITE ELEMENT EXTERIOR CALCULUS FOR EVOLUTION PROBLEMS
    Gillette, Andrew
    Holst, Michael
    Zhu, Yunrong
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (02) : 187 - 212
  • [42] FINITE ELEMENT EXTERIOR CALCULUS FOR PARABOLIC PROBLEMS
    Arnold, Douglas N.
    Chen, Hongtao
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 17 - 34
  • [43] A mixed finite element method for a nonlinear Dirichlet problem
    Farhloul, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (01) : 121 - 132
  • [44] A MIXED FINITE ELEMENT METHOD FOR NONLINEAR DIFFUSION EQUATIONS
    Burger, Martin
    Carrillo, Jose A.
    Wolfram, Marie-Therese
    [J]. KINETIC AND RELATED MODELS, 2010, 3 (01) : 59 - 83
  • [45] A NONCONFORMING GENERALIZED FINITE ELEMENT METHOD FOR TRANSMISSION PROBLEMS
    Mazzucato, Anna L.
    Nistor, Victor
    Qu, Qingqin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 555 - 576
  • [46] Mixed finite element domain decomposition for nonlinear parabolic problems
    Kim, MY
    Park, EJ
    Park, J
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (8-9) : 1061 - 1070
  • [47] Mixed finite element method for beam and frame problems
    Taylor, RL
    Filippou, FC
    Saritas, A
    Auricchio, F
    [J]. COMPUTATIONAL MECHANICS, 2003, 31 (1-2) : 192 - 203
  • [48] A mixed finite element method for beam and frame problems
    R. L. Taylor
    F. C. Filippou
    A. Saritas
    F. Auricchio
    [J]. Computational Mechanics, 2003, 31 : 192 - 203
  • [49] MIXED FINITE-ELEMENT METHOD FOR CONTACT PROBLEMS
    OSTACHOWICZ, W
    [J]. COMPUTERS & STRUCTURES, 1984, 18 (05) : 937 - 945
  • [50] A MIXED-LAGRANGE MULTIPLIER FINITE-ELEMENT METHOD FOR THE POLYHARMONIC EQUATION
    BRAMBLE, JH
    FALK, RS
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04): : 519 - 557