Sums of Square-Zero Infinite Matrices Revisited

被引:0
|
作者
Roksana Słowik
机构
[1] Silesian University of Technology,Institute of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2019年 / 45卷
关键词
Square-zero matrix; Sum; Infinite matrix; Primary 15A99; Secondary 15B99;
D O I
暂无
中图分类号
学科分类号
摘要
We improve some earlier results and prove that every N×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}\times \mathbb {N}$$\end{document} column finite matrix over a field of characteristic different from 2 is a sum of at most 10 square-zero matrices.
引用
收藏
页码:911 / 916
页数:5
相关论文
共 50 条
  • [31] FUNCTORIAL FILTRATIONS AND THE PROBLEM OF AN IDEMPOTENT AND A SQUARE-ZERO MATRIX
    CRAWLEYBOEVEY, WW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 38 : 385 - 402
  • [32] SUMS OF OPERATORS WITH SQUARE ZERO
    FILLMORE, PA
    ACTA SCIENTIARUM MATHEMATICARUM, 1967, 28 (3-4): : 285 - &
  • [33] An irreducible semigroup of non-negative square-zero operators
    R. Drnovšek
    D. Kokol-Bukovšek
    L. Livshits
    G. MacDonald
    M. Omladič
    H. Radjavi
    Integral Equations and Operator Theory, 2002, 42 : 449 - 460
  • [34] C* -algebras hereditarily containing nonzero, square-zero elements
    Amini, Massoud
    Elliott, George A.
    Rouzbehani, Mohammad
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (04): : 1081 - 1091
  • [35] Square-zero derivations of matrix algebras over commutative rings
    Zhou, Jinming
    Wang, Dengyin
    Zhang, Qinghua
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 239 - 243
  • [36] An irreducible semigroup of non-negative square-zero operators
    Drnovsek, R
    Kokol-Bukovsek, D
    Livshits, L
    Macdonald, G
    Omladic, M
    Radjavi, H
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 42 (04) : 449 - 460
  • [37] Expressing Infinite Matrices as Sums of Idempotents
    Sowik, R.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 69 (08) : 1333 - 1340
  • [38] Expressing Infinite Matrices as Sums of Idempotents
    R. Słowik
    Ukrainian Mathematical Journal, 2018, 69 : 1333 - 1340
  • [39] ON THE SQUARE ROOTS OF INFINITE MATRICES
    HUPERT, LEP
    LEGGETT, A
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (01): : 34 - 38
  • [40] INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIALS REVISITED
    Koshy, Thomas
    FIBONACCI QUARTERLY, 2022, 60 (03): : 229 - 234