Special Lagrangian curvature

被引:0
|
作者
Graham Smith
机构
[1] Max Planck Institute,
来源
Mathematische Annalen | 2013年 / 355卷
关键词
Primary 53C42; Secondary 35J60; 58G03; 53C38;
D O I
暂无
中图分类号
学科分类号
摘要
We define the notion of special Lagrangian curvature, showing how it may be interpreted as an alternative higher dimensional generalisation of two dimensional Gaussian curvature. We obtain first a local rigidity result for this curvature when the ambient manifold has negative sectional curvature. We then show how this curvature relates to the canonical special Legendrian structure of spherical subbundles of the tangent bundle of the ambient manifold. This allows us to establish a strong compactness result. In the case where the special Lagrangian angle equals (n − 1)π/2, we obtain compactness modulo a unique mode of degeneration, where a sequence of hypersurfaces wraps ever tighter round a geodesic.
引用
收藏
页码:57 / 95
页数:38
相关论文
共 50 条
  • [1] Special Lagrangian curvature
    Smith, Graham
    [J]. MATHEMATISCHE ANNALEN, 2013, 355 (01) : 57 - 95
  • [2] On the curvature of moduli space of special Lagrangian submanifolds.
    Nannicini, A
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2002, 5B (02): : 349 - 362
  • [3] On the second boundary value problem for special Lagrangian curvature potential equation
    Rongli Huang
    Sitong Li
    [J]. Mathematische Zeitschrift, 2022, 302 : 391 - 417
  • [4] On the second boundary value problem for special Lagrangian curvature potential equation
    Huang, Rongli
    Li, Sitong
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 391 - 417
  • [5] SPECIAL LAGRANGIANS, LAGRANGIAN MEAN CURVATURE FLOW AND THE GIBBONS-HAWKING ANSATZ
    Lotay, Jason D.
    Oliveira, Goncalo
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (03) : 1121 - 1184
  • [6] UNIQUENESS RESULTS FOR SPECIAL LAGRANGIANS AND LAGRANGIAN MEAN CURVATURE FLOW EXPANDERS IN Cm
    Imagi, Yohsuke
    Joyce, Dominic
    dos Santos, Joana Oliveira
    [J]. DUKE MATHEMATICAL JOURNAL, 2016, 165 (05) : 847 - 933
  • [7] The mean curvature of special Lagrangian 3-folds in SU(3)-structures with torsion
    Ball, Gavin
    Madnick, Jesse
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 162
  • [8] Curvature of Lagrangian trajectories in turbulence
    Xu, Haitao
    Ouellette, Nicholas T.
    Bodenschatz, Eberhard
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (05)
  • [9] Lagrangian mean curvature flow with boundary
    Christopher G. Evans
    Ben Lambert
    Albert Wood
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [10] Lagrangian mean curvature flow with boundary
    Evans, Christopher G.
    Lambert, Ben
    Wood, Albert
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)