Flag Varieties and the Yang-Baxter Equation

被引:0
|
作者
ALAIN LASCOUX
BERNARD LECLERC
JEAN-YVES THIBON
机构
[1] Université Paris 7,Institute Blaise Pascal, LITP
[2] Université de Caen,D de Mathématiques
[3] Université de Marne-la-valée,Institut Gaspard Monge
来源
关键词
Yang-Baxter equation; Schubert polynominals; Hecke algebra.;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate certain bases of Hecke algebras defined by means of theYang–Baxter equation, which we call Yang–Baxter bases. These bases areessentially self-adjoint with respect to a canonical bilinear form. In thecase of the degenerate Hecke algebra, we identify the coefficients in theexpansion of the Yang–Baxter basis on the usual basis of the algebra withspecializations of double Schubert polynomials. We also describe theexpansions associated to other specializations of the generic Heckealgebra.
引用
收藏
页码:75 / 90
页数:15
相关论文
共 50 条
  • [31] On twisting solutions to the Yang-Baxter equation
    Kulish, PP
    Mudrov, AI
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) : 115 - 122
  • [32] Stochasticization of Solutions to the Yang-Baxter Equation
    Aggarwal, Amol
    Borodin, Alexei
    Bufetov, Alexey
    [J]. ANNALES HENRI POINCARE, 2019, 20 (08): : 2495 - 2554
  • [33] Knitting ansatz and solutions of Yang-Baxter equation
    Zhang, J
    Yan, H
    [J]. FRONTIERS IN QUANTUM FIELD THEORY, PROCEEDINGS OF THE INTERNATIONAL WORKSHOP, 1998, : 253 - 258
  • [34] HAMILTONIAN OPERATORS AND THE CLASSICAL YANG-BAXTER EQUATION
    GELFAND, IM
    DORFMAN, IY
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (04) : 241 - 248
  • [35] Classical Yang-Baxter equation from β-supergravity
    Ilya Bakhmatov
    Edvard T. Musaev
    [J]. Journal of High Energy Physics, 2019
  • [36] Solutions of Yang-Baxter equation with color parameters
    孙晓东
    王世坤
    [J]. Science China Mathematics, 1995, (09) : 1105 - 1116
  • [37] Solutions of Yang-Baxter equation with color parameters
    孙晓东
    王世坤
    [J]. Science in China,SerA., 1995, Ser.A.1995 (09) : 1105 - 1116
  • [38] On Frobenius algebras and the quantum Yang-Baxter equation
    Beidar, KI
    Fong, Y
    Stolin, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (09) : 3823 - 3836
  • [39] The hyperbolic modular double and the Yang-Baxter equation
    Chicherin, Dmitry
    Spiridonov, Vyacheslav P.
    [J]. REPRESENTATION THEORY, SPECIAL FUNCTIONS AND PAINLEVE EQUATIONS - RIMS 2015, 2018, 76 : 95 - 123
  • [40] On the set-theoretical Yang-Baxter equation
    Lu, JH
    Yan, M
    Zhu, YC
    [J]. DUKE MATHEMATICAL JOURNAL, 2000, 104 (01) : 1 - 18