Flag Varieties and the Yang-Baxter Equation

被引:0
|
作者
ALAIN LASCOUX
BERNARD LECLERC
JEAN-YVES THIBON
机构
[1] Université Paris 7,Institute Blaise Pascal, LITP
[2] Université de Caen,D de Mathématiques
[3] Université de Marne-la-valée,Institut Gaspard Monge
来源
关键词
Yang-Baxter equation; Schubert polynominals; Hecke algebra.;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate certain bases of Hecke algebras defined by means of theYang–Baxter equation, which we call Yang–Baxter bases. These bases areessentially self-adjoint with respect to a canonical bilinear form. In thecase of the degenerate Hecke algebra, we identify the coefficients in theexpansion of the Yang–Baxter basis on the usual basis of the algebra withspecializations of double Schubert polynomials. We also describe theexpansions associated to other specializations of the generic Heckealgebra.
引用
收藏
页码:75 / 90
页数:15
相关论文
共 50 条
  • [1] Flag varieties and the Yang-Baxter equation
    Lascoux, A
    Leclerc, B
    Thibon, JY
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (01) : 75 - 90
  • [2] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777
  • [3] THE YANG-BAXTER AND PENTAGON EQUATION
    VANDAELE, A
    VANKEER, S
    [J]. COMPOSITIO MATHEMATICA, 1994, 91 (02) : 201 - 221
  • [4] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [5] GENERALIZED YANG-BAXTER EQUATION
    KASHAEV, RM
    STROGANOV, YG
    [J]. MODERN PHYSICS LETTERS A, 1993, 8 (24) : 2299 - 2309
  • [6] ON THE(COLORED)YANG-BAXTER EQUATION
    Hobby, David
    Iantovics, Barna Laszlo
    Nichita, Florin F.
    [J]. BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2010, 1 : 33 - 39
  • [7] Quantum Yang-Baxter Equation, Braided Semigroups, and Dynamical Yang-Baxter Maps
    Matsumoto, Diogo Kendy
    Shibukawa, Youichi
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 227 - 237
  • [8] A Yang-Baxter equation for metaplectic ice
    Brubaker, Ben
    Buciumas, Valentin
    Bump, Daniel
    Gray, Nathan
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (01) : 101 - 148
  • [9] Classical Yang-Baxter equation and the A∞-constraint
    Polishchuk, A
    [J]. ADVANCES IN MATHEMATICS, 2002, 168 (01) : 56 - 95
  • [10] Optical simulation of the Yang-Baxter equation
    Hu, Shuang-Wei
    Xue, Kang
    Ge, Mo-Lin
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):