Implicit fitting of point cloud data using radial hermite basis functions

被引:0
|
作者
G. M. Nielson
H. Hagen
K. Lee
机构
[1] Arizona State University,Computer Science and Engineering Mathematics
来源
Computing | 2007年 / 79卷
关键词
65D17; 41A46; Surface fitting; point clouds; isosurfaces; noisy 3D data; scattered data approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a new technique for fitting noisy scattered point cloud data. The fitting surface is determined as zero level isosurface of a trivariate model which is an implicit least squares fit of the data based upon Radial Hermite Operators (RHO). We illustrate the value of these new techniques with several diverse applications.
引用
收藏
页码:301 / 307
页数:6
相关论文
共 50 条
  • [31] Reconstructing the magnetosphere from data using radial basis functions
    Andreeva, Varvara A.
    Tsyganenko, Nikolai A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (03) : 2249 - 2263
  • [32] CURVE-FITTING USING IMPLICIT FUNCTIONS
    THIELCKE, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (05): : 301 - 302
  • [33] Data fitting by spline functions using the biorthonormal basis of the B-spline basis
    Haruki, R
    Horiuchi, T
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 270 - 273
  • [34] A robust cylindrical fitting to point cloud data
    Palancz, B.
    Awange, J. L.
    Somogyi, A.
    Rehany, N.
    Lovas, T.
    Molnar, B.
    Fukuda, Y.
    AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2016, 63 (05) : 665 - 673
  • [35] Implicit surface reconstruction with radial basis functions via PDEs
    Liu, Xiao-Yan
    Wang, Hui
    Chen, C. S.
    Wang, Qing
    Zhou, Xiaoshuang
    Wang, Yong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 110 (110) : 95 - 103
  • [36] Normalized implicit eigenvector least squares operators for noisy scattered data: radial basis functions
    Nielson, Gregory M.
    COMPUTING, 2009, 86 (2-3) : 199 - 212
  • [37] Fast Implicit Surface Reconstruction for the Radial Basis Functions Interpolant
    Zhong, Deyun
    Zhang, Ju
    Wang, Liguan
    APPLIED SCIENCES-BASEL, 2019, 9 (24):
  • [38] Normalized implicit eigenvector least squares operators for noisy scattered data: radial basis functions
    Gregory M. Nielson
    Computing, 2009, 86 : 199 - 212
  • [39] Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions
    Chettibi, Taha
    ROBOTICA, 2019, 37 (03) : 539 - 559