On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ (G) = 3

被引:0
|
作者
Haiying Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
来源
关键词
The adjacent vertex-distinguishing total coloring; The adjacent vertex-distinguishing total chromatic number; Subdivision vertex; Subdivision graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V(G),E(G))$$\end{document} be a simple graph and T(G) be the set of vertices and edges of G. Let C be a k-color set. A (proper) total k-coloring f of G is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\!: T(G)\longrightarrow C$$\end{document} such that no adjacent or incident elements of T(G) receive the same color. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V(G)$$\end{document}, denote \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(u)=\{f(u)\}\cup\{f(uv)|uv\in E(G)\}$$\end{document}. The total k-coloring f of G is called the adjacent vertex-distinguishing if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(u)\neq C(v)$$\end{document} for any edge \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. And the smallest number of colors is called the adjacent vertex-distinguishing total chromatic number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{at}(G)$$\end{document} of G. In this paper, we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{at}(G)\leq 6$$\end{document} for all connected graphs with maximum degree three. This is a step towards a conjecture on the adjacent vertex-distinguishing total coloring.
引用
收藏
页码:87 / 109
页数:22
相关论文
共 50 条
  • [1] On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ(G)=3
    Wang, Haiying
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (01) : 87 - 109
  • [2] Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes
    Chen, Meirun
    Guo, Xiaofeng
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (12) : 599 - 602
  • [3] Total and adjacent vertex-distinguishing total chromatic numbers of augmented cubes
    Chen, Meirun
    Zhai, Shaohui
    [J]. ARS COMBINATORIA, 2014, 114 : 87 - 96
  • [4] On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs
    Zhu, Enqiang
    Liu, Chanjuan
    Xu, Jin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02): : 253 - 266
  • [5] On Adjacent Vertex-Distinguishing Total Chromatic Number of Generalized Petersen Graphs
    Zhu, Enqiang
    Jiang, Fei
    Li, Zepeng
    Shao, Zehui
    Xu, Jin
    [J]. 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 230 - 234
  • [6] The adjacent vertex distinguishing total chromatic numbers of planar graphs with Δ=10
    Cheng, Xiaohan
    Wang, Guanghui
    Wu, Jianliang
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 383 - 397
  • [7] Incidence adjacent vertex-distinguishing total coloring of graphs
    Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China
    不详
    [J]. Proc. - Int. Conf. Comput. Intell. Softw. Eng., CiSE, 1600,
  • [8] UPPER BOUNDS FOR THE D(β)-VERTEX-DISTINGUISHING EI-TOTAL CHROMATIC NUMBERS OF GRAPHS
    Liu, Xinsheng
    Wang, Zhiqiang
    [J]. 2011 3RD INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 2, 2012, : 265 - 269
  • [9] On the adjacent vertex-distinguishing total colorings of some cubic graphs
    Feng, Yun
    Lin, Wensong
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 185 - 199
  • [10] The Adjacent Vertex Distinguishing Total Chromatic Number of Graphs
    Wang, Zhiwen
    Zhu, Enqiang
    [J]. 2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,