On perturbative instability of Pope-Warner solutions on Sasaki-Einstein manifolds

被引:0
|
作者
Krzysztof Pilch
Isaiah Yoo
机构
[1] University of Southern California,Department of Physics and Astronomy
关键词
M-Theory; Flux compactifications; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Sasaki-Einstein manifold, M7, there is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} supersymmetric AdS4 × M7 Freund-Rubin solution of eleven-dimensional supergravity and the corresponding non-supersymmetric solutions: the perturbatively stable skew-whiffed solution, the perturbatively unstable Englert solution, and the Pope-Warner solution, which is known to be perturbatively unstable when M7 is the seven-sphere or, more generally, a tri-Sasakian manifold. We show that similar perturbative instability of the Pope-Warner solution will arise for any regular Sasaki-Einstein manifold, M7, admitting a basic, primitive, transverse (1,1)-eigenform of the Hodge-de Rham Laplacian with the eigenvalue in the range between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 2\left( {9-4\sqrt{3}} \right) $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 2\left( {9+4\sqrt{3}} \right) $\end{document}. Existence of such (1,1)-forms on all homogeneous Sasaki-Einstein manifolds can be shown explicitly using the Kähler quotient construction or the standard harmonic expansion. The latter shows that the instability arises from the coupling between the Pope-Warner background and Kaluza-Klein scalar modes that at the supersymmetric point lie in a long Z-vector supermultiplet. We also verify that the instability persists for the orbifolds of homogeneous Sasaki-Einstein manifolds that have been discussed recently.
引用
收藏
相关论文
共 50 条
  • [1] On perturbative instability of Pope-Warner solutions on Sasaki-Einstein manifolds
    Pilch, Krzysztof
    Yoo, Isaiah
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [2] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [3] Laplace operators on Sasaki-Einstein manifolds
    Johannes Schmude
    [J]. Journal of High Energy Physics, 2014
  • [4] On Sasaki-Einstein manifolds in dimension five
    Charles P. Boyer
    Michael Nakamaye
    [J]. Geometriae Dedicata, 2010, 144 : 141 - 156
  • [5] String Solutions in Sasaki-Einstein Manifolds and their marginally deformed versions
    Giataganas, Dimitrios
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 216 : 227 - 228
  • [6] NEW EXAMPLES OF SASAKI-EINSTEIN MANIFOLDS
    Mabuchi, Toshiki
    Nakagawa, Yasuhiro
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (02) : 243 - 252
  • [7] Sasaki-Einstein manifolds and their spinorial geometry
    Kim, NW
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (02) : 197 - 201
  • [8] On the topology of some Sasaki-Einstein manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 57 - 72
  • [9] On Sasaki-Einstein manifolds in dimension five
    Boyer, Charles P.
    Nakamaye, Michael
    [J]. GEOMETRIAE DEDICATA, 2010, 144 (01) : 141 - 156
  • [10] Sasaki-einstein manifolds and volume minimisation
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) : 611 - 673