A note on the KAM theorem for symplectic mappings

被引:3
|
作者
Shang Z.-J. [1 ]
机构
[1] Institute of Mathematics, Academia Sinica
基金
中国国家自然科学基金;
关键词
Differentiable foliations; Invariant tori; KAM theorem; Relevant estimates; Small twist theorem; Symplectic mappings;
D O I
10.1023/A:1009068425415
中图分类号
学科分类号
摘要
The mapping version of Pöschel's theory on differentiable foliation structures of invariant tori is presented and the relevant estimates explicitly in terms of the diophantine constant and the nondegeneracy parameters of frequency maps are given. As a direct application of the main result, a generalization of Moser's small twist theorem to high dimensions is given. © 2000 Plenum Publishing Corporation.
引用
收藏
页码:357 / 383
页数:26
相关论文
共 50 条
  • [21] THE SEARCH FOR A QUANTUM KAM THEOREM
    REICHL, LE
    LIN, WA
    FOUNDATIONS OF PHYSICS, 1987, 17 (07) : 689 - 697
  • [22] A Note on Mori's Theorem of K-quasiconformal Mappings
    李忠
    崔贵珍
    Acta Mathematica Sinica,English Series, 1993, (01) : 55 - 62
  • [23] ON QUADRATIC SYMPLECTIC MAPPINGS
    MOSER, J
    MATHEMATISCHE ZEITSCHRIFT, 1994, 216 (03) : 417 - 430
  • [24] Converse KAM theory for symplectic twist maps
    MacKay, R. S.
    Meiss, J. D.
    Stark, J.
    NONLINEARITY, 1989, 2 (04) : 555 - 570
  • [25] The KAM theorem and renormalization group
    De Simone, E.
    Kupiainen, A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 419 - 431
  • [26] A KAM theorem for the defocusing NLS equation
    Kappeler, Thomas
    Liang, Zhenguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (06) : 4068 - 4113
  • [27] ON SYMPLECTIC MAPPINGS OF CONTRACTION OPERATORS
    PHILLIPS, RS
    STUDIA MATHEMATICA, 1968, 31 (01) : 15 - &
  • [28] Existence of whiskered KAM tori of conformally symplectic systems
    Calleja, Renato C.
    Celletti, Alessandra
    de la Llave, Rafael
    NONLINEARITY, 2020, 33 (01) : 538 - 597
  • [29] A GEOMETRICAL-SETTING FOR THE KAM THEOREM
    FERRARIO, C
    LOVECCHIO, G
    MARMO, G
    MORANDI, G
    LETTERE AL NUOVO CIMENTO, 1983, 38 (04): : 97 - 102
  • [30] KAM theorem for the nonlinear Schrodinger equation
    Grebert, B
    Kappeler, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (05): : 473 - 478