On the Landau–Lifschitz Degrees of Freedom in 2-D Turbulence

被引:0
|
作者
C. Foias
M. S. Jolly
O. P. Manley
R. Rosa
机构
[1] Indiana University,Department of Mathematics
[2] Texas A&M University,Department of Mathematics
[3] Universidade Federal do Rio De Janeiro,Instituto de Matematica
来源
关键词
Navier–Stokes; turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if the Kraichnan theory of fully developed turbulence holds, then the Landau–Lifschitz degrees of freedom is bounded (up to a logarithmic term) by G1/2, where G is the Grashof number.
引用
收藏
页码:1017 / 1019
页数:2
相关论文
共 50 条
  • [1] On the Landau-Lifschitz degrees of freedom in 2-D turbulence
    Foias, C
    Jolly, MS
    Manley, OP
    Rosa, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (3-4) : 1017 - 1019
  • [2] Electromagnetic degrees of freedom in 2-D scattering environments
    Xu, Jie
    Janaswamy, Ramakrishna
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (12) : 3882 - 3894
  • [3] DEGREES OF FREEDOM OF TURBULENCE
    PALADIN, G
    VULPIANI, A
    [J]. PHYSICAL REVIEW A, 1987, 35 (04) : 1971 - 1973
  • [4] ON UNIVERSAL RELATIONS IN 2-D TURBULENCE
    Balci, Nusret
    Foias, Ciprian
    Jolly, Michael S.
    Rosa, Ricardo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04): : 1327 - 1351
  • [5] NUMERICAL STUDY OF 2-D TURBULENCE
    FORNBERG, B
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 25 (01) : 1 - 31
  • [6] Electromagnetic degrees of freedom in 2-D scattering environments (vol 54, pg 3882, 2006)
    Xu, Jie
    Janaswamy, Ramakrishna
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (01) : 250 - 250
  • [7] The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom
    C. Cao
    M. A. Rammaha
    E. S. Titi
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 341 - 360
  • [8] The Navier-Stokes equations on the rotating 2-D sphere:: Gevrey regularity and asymptotic degrees of freedom
    Cao, CS
    Rammaha, MA
    Titi, ES
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (03): : 341 - 360
  • [9] Lagrangian turbulence in nonstationary 2-D flows
    Chernikov, A. A.
    Neishtadt, A. I.
    Rogal'sky, A. V.
    Yakhnin, V. Z.
    [J]. CHAOS, 1991, 1 (02)
  • [10] 2-D turbulence for forcing in all scales
    Balci, N.
    Foias, C.
    Jolly, M. S.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 1 - 32