2-D turbulence for forcing in all scales

被引:3
|
作者
Balci, N. [2 ]
Foias, C. [3 ]
Jolly, M. S. [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Univ Minnesota, Inst Math & Its Applicat, Minneapolis, MN 55455 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
关键词
Navier-Stokes equations; Turbulence; Enstrophy cascade; NAVIER-STOKES EQUATIONS; FULLY-DEVELOPED TURBULENCE; 2-DIMENSIONAL TURBULENCE; ENERGY-SPECTRUM; DISSIPATION;
D O I
10.1016/j.matpur.2009.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rigorous estimates to support the Batchelor-Kraichnan-Leith theory of 2-D turbulence are made for time-dependent forcing at all length scales. The main estimate, derived under several different assumptions on the smoothness of the force in space and time, bounds the dissipation wavenumber kappa(eta) from above and below in terms of a generalized Grashof number. That estimate is shown to be connected to the energy power law, the dissipation law, and the enstrophy cascade. These results impose certain restrictions on the shape of the force, which in several cases is allowed to be discontinuous in time. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [1] EFFECTS OF THE FORCING FUNCTION SPECTRUM ON THE ENERGY-SPECTRUM IN 2-D TURBULENCE
    CONSTANTIN, P
    FOIAS, C
    MANLEY, OP
    [J]. PHYSICS OF FLUIDS, 1994, 6 (01) : 427 - 429
  • [2] ON UNIVERSAL RELATIONS IN 2-D TURBULENCE
    Balci, Nusret
    Foias, Ciprian
    Jolly, Michael S.
    Rosa, Ricardo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) : 1327 - 1351
  • [3] NUMERICAL STUDY OF 2-D TURBULENCE
    FORNBERG, B
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 25 (01) : 1 - 31
  • [4] Growing 2-D insulators on large scales
    Savage, Neil
    [J]. CHEMICAL & ENGINEERING NEWS, 2020, 98 (10) : 6 - 6
  • [5] Lagrangian turbulence in nonstationary 2-D flows
    Chernikov, A. A.
    Neishtadt, A. I.
    Rogal'sky, A. V.
    Yakhnin, V. Z.
    [J]. CHAOS, 1991, 1 (02)
  • [6] THE RESPONSE OF ISOTROPIC TURBULENCE TO ISOTROPIC AND ANISOTROPIC FORCING AT THE LARGE SCALES
    YEUNG, PK
    BRASSEUR, JG
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (05): : 884 - 897
  • [7] Applications of 2-D Moire Deflectometry to Atmospheric Turbulence
    Rasouli, S.
    Niry, M. D.
    Rajabi, Y.
    Panahi, A. A.
    Niemela, J. J.
    [J]. JOURNAL OF APPLIED FLUID MECHANICS, 2014, 7 (04) : 651 - 657
  • [8] ON THE EVOLUTION EQUATION OF AN INVISCID VORTEX IN 2-D TURBULENCE
    HE, XY
    [J]. CHAOS SOLITONS & FRACTALS, 1994, 4 (05) : 693 - 699
  • [9] On the Landau–Lifschitz Degrees of Freedom in 2-D Turbulence
    C. Foias
    M. S. Jolly
    O. P. Manley
    R. Rosa
    [J]. Journal of Statistical Physics, 2003, 111 : 1017 - 1019
  • [10] On the global attractor of 2D incompressible turbulence with random forcing
    Emami, Pedram
    Bowman, John C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (06) : 4036 - 4066