Fractional Gaussian fields on the Sierpiński Gasket and related fractals

被引:0
|
作者
Fabrice Baudoin
Céline Lacaux
机构
[1] University of Connecticut,Department of Mathematics
[2] Avignon Université,LMA EA 2151
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the regularity of the Gaussian random measures (− Δ)−sW on the Sierpiński gasket where W is a white noise and Δ the Laplacian with respect to the Hausdorff measure. Along the way we prove sharp global Hölder regularity estimates for the fractional Riesz kernels on the gasket which are new and of independent interest.
引用
收藏
页码:719 / 739
页数:20
相关论文
共 50 条
  • [31] On fractional Gaussian random fields simulations
    Brouste, Alexandre
    Istas, Jacques
    Lambert-Lacroix, Sophie
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2007, 23 (01): : 1 - 23
  • [32] Conditional Fractional Gaussian Fields with the Package FieldSim
    Brouste, Alexandre
    Istas, Jacques
    Lambert-Lacroix, Sophie
    [J]. R JOURNAL, 2016, 8 (01): : 38 - 47
  • [33] On Simulation of Manifold Indexed Fractional Gaussian Fields
    Brouste, Alexandre
    Istas, Jacques
    Lambert-Lacroix, Sophie
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (04): : 1 - 14
  • [34] Image denoising algorithms based on fractional sincα with the covariance of fractional Gaussian fields
    Jalab, H. A.
    Ibrahim, R. W.
    [J]. IMAGING SCIENCE JOURNAL, 2016, 64 (02): : 100 - 108
  • [35] Kinematic formula for heterogeneous Gaussian related fields
    Panigrahi, Snigdha
    Taylor, Jonathan
    Vadlamani, Sreekar
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2437 - 2465
  • [36] Sojourn times of Gaussian and related random fields
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Liu, Peng
    Michna, Zbigniew
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 249 - 289
  • [37] Analytical and Computational Problems Related to Fractional Gaussian Noise
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Schilling, Rene L.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [38] Persistence Exponents for Gaussian Random Fields of Fractional Brownian Motion Type
    G. Molchan
    [J]. Journal of Statistical Physics, 2018, 173 : 1587 - 1597
  • [39] Persistence Exponents for Gaussian Random Fields of Fractional Brownian Motion Type
    Molchan, G.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (06) : 1587 - 1597
  • [40] Fractional Gaussian Fields for Modeling and Rendering of Spatially-Correlated Media
    Guo, Jie
    Chen, Yanjun
    Hu, Bingyang
    Yan, Ling-Qi
    Guo, Yanwen
    Liu, Yuntao
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):