Helicity decomposition of ghost-free massive gravity

被引:0
|
作者
Claudia de Rham
Gregory Gabadadze
Andrew J. Tolley
机构
[1] Université de Genève,Départment de Physique Théorique and Center for Astroparticle Physics
[2] Case Western Reserve University,Department of Physics
[3] New York University,Center for Cosmology and Particle Physics, Department of Physics
关键词
Classical Theories of Gravity; Space-Time Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We perform a helicity decomposition in the full Lagrangian of the class of Massive Gravity theories previously proven to be free of the sixth (ghost) degree of freedom via a Hamiltonian analysis. We demonstrate, both with and without the use of nonlinear field redefinitions, that the scale at which the first interactions of the helicity-zero mode come in is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\Lambda_{{3}}} = {\left( {{M_{\text{Pl}}}{m^{{2}}}} \right)^{{{1}/{3}}}} $\end{document}, and that this is the same scale at which helicity-zero perturbation theory breaks down. We show that the number of propagating helicity modes remains five in the full nonlinear theory with sources. We clarify recent misconceptions in the literature advocating the existence of either a ghost or a breakdown of perturbation theory at the significantly lower energy scales, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\Lambda_{{5}}} = {\left( {{M_{\text{Pl}}}{m^{{4}}}} \right)^{{{1}/{5}}}} $\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\Lambda_{{4}}} = {\left( {{M_{\text{Pl}}}{m^{{3}}}} \right)^{{{1}/{4}}}} $\end{document}, which arose because relevant terms in those calculations were overlooked. As an interesting byproduct of our analysis, we show that it is possible to derive the Stückelberg formalism from the helicity decomposition, without ever invoking diffeomorphism invariance, just from a simple requirement that the kinetic terms of the helicity-two, -one and -zero modes are diagonalized.
引用
收藏
相关论文
共 50 条
  • [1] Helicity decomposition of ghost-free massive gravity
    de Rham, Claudia
    Gabadadze, Gregory
    Tolley, Andrew J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11):
  • [2] Bimetric gravity from ghost-free massive gravity
    Hassan, S. F.
    Rosen, Rachel A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (02):
  • [3] Bimetric gravity from ghost-free massive gravity
    S. F. Hassan
    Rachel A. Rosen
    [J]. Journal of High Energy Physics, 2012
  • [4] Vacua and instantons of ghost-free massive gravity
    Park, Minjoon
    Sorbo, Lorenzo
    [J]. PHYSICAL REVIEW D, 2013, 87 (02):
  • [5] Superluminal vector in ghost-free massive gravity
    Siqing Yu
    [J]. Journal of High Energy Physics, 2014
  • [6] Energy in ghost-free massive gravity theory
    Volkov, Mikhail S.
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [7] Lorentz symmetry in ghost-free massive gravity
    Kostelecky, V. Alan
    Potting, Robertus
    [J]. PHYSICAL REVIEW D, 2021, 104 (10)
  • [8] Dynamical formulation of ghost-free massive gravity
    de Rham, Claudia
    Kozuszek, Jan
    Tolley, Andrew J.
    Wiseman, Toby
    [J]. PHYSICAL REVIEW D, 2023, 108 (08)
  • [9] Massive Gravity Coupled to Galileons is Ghost-Free
    Andrews, Melinda
    Goon, Garrett
    Hinterbichler, Kurt
    Stokes, James
    Trodden, Mark
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [10] Superluminal vector in ghost-free massive gravity
    Yu, Siqing
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09): : 1 - 21