Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization

被引:0
|
作者
A. L. Custódio
R. Garmanjani
M. Raydan
机构
[1] FCT NOVA,Center for Mathematics and Applications (NOVA Math)
[2] FCT NOVA,Department of Mathematics
来源
4OR | 2024年 / 22卷
关键词
Derivative-free optimization; Fully-linear models; Fully-quadratic models; Cubic regularization; Worst-case complexity; 90C30; 65K05; 90C56; 65D05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a derivative-free separable quadratic modeling and cubic regularization technique for solving smooth unconstrained minimization problems. The derivative-free approach is mainly concerned with building a quadratic model that could be generated by numerical interpolation or using a minimum Frobenius norm approach, when the number of points available does not allow to build a complete quadratic model. This model plays a key role to generate an approximated gradient vector and Hessian matrix of the objective function at every iteration. We add a specialized cubic regularization strategy to minimize the quadratic model at each iteration, that makes use of separability. We discuss convergence results, including worst case complexity, of the proposed schemes to first-order stationary points. Some preliminary numerical results are presented to illustrate the robustness of the specialized separable cubic algorithm.
引用
收藏
页码:121 / 144
页数:23
相关论文
共 50 条
  • [41] Conjugate gradient path method without line search technique for derivative-free unconstrained optimization
    Jueyu Wang
    Detong Zhu
    [J]. Numerical Algorithms, 2016, 73 : 957 - 983
  • [42] New sequential and parallel derivative-free algorithms for unconstrained minimization
    García-Palomares, UM
    Rodríguez, JF
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) : 79 - 96
  • [43] SELF-CORRECTING GEOMETRY IN MODEL-BASED ALGORITHMS FOR DERIVATIVE-FREE UNCONSTRAINED OPTIMIZATION
    Scheinberg, K.
    Toint, Ph. L.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3512 - 3532
  • [44] ZOOpt: a toolbox for derivative-free optimization
    Liu, Yu-Ren
    Hu, Yi-Qi
    Qian, Hong
    Qian, Chao
    Yu, Yang
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [45] Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization
    Martinez, J. M.
    Raydan, M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (02) : 319 - 342
  • [46] ZOOpt: a toolbox for derivative-free optimization
    Yu-Ren LIU
    Yi-Qi HU
    Hong QIAN
    Chao QIAN
    Yang YU
    [J]. Science China(Information Sciences), 2022, 65 (10) : 293 - 294
  • [47] Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization
    J. M. Martínez
    M. Raydan
    [J]. Journal of Global Optimization, 2015, 63 : 319 - 342
  • [48] ZOOpt: a toolbox for derivative-free optimization
    Yu-Ren Liu
    Yi-Qi Hu
    Hong Qian
    Chao Qian
    Yang Yu
    [J]. Science China Information Sciences, 2022, 65
  • [49] Derivative-Free Optimization via Classification
    Yu, Yang
    Qian, Hong
    Hu, Yi-Qi
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2286 - 2292
  • [50] BENCHMARKING DERIVATIVE-FREE OPTIMIZATION ALGORITHMS
    More, Jorge J.
    Wild, Stefan M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 172 - 191