The Materials Data Facility: Data Services to Advance Materials Science Research

被引:0
|
作者
B. Blaiszik
K. Chard
J. Pruyne
R. Ananthakrishnan
S. Tuecke
I. Foster
机构
[1] University of Chicago,Computation Institute
[2] University of Chicago,Department of Computer Science
[3] Argonne National Laboratory,Mathematics and Computer Science Division
来源
JOM | 2016年 / 68卷
关键词
Materials; data publication; data management; data preservation; software as a service;
D O I
暂无
中图分类号
学科分类号
摘要
With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF’s design, current status, and future plans.
引用
收藏
页码:2045 / 2052
页数:7
相关论文
共 50 条
  • [21] Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science
    Agrawal, Ankit
    Choudhary, Alok
    APL MATERIALS, 2016, 4 (05):
  • [22] NLP meets materials science: Quantifying the presentation of materials data in literature
    Sayeed, Hasan M.
    Smallwood, Wade
    Baird, Sterling G.
    Sparks, Taylor D.
    MATTER, 2024, 7 (03) : 723 - 727
  • [23] Merging Materials and Data Science: Opportunities, Challenges, and Education in Materials Informatics
    Oweida, Thomas J.
    Mahmood, Akhlak
    Manning, Matthew D.
    Rigin, Sergei
    Yingling, Yaroslava G.
    MRS ADVANCES, 2020, 5 (07) : 329 - 346
  • [24] Merging Materials and Data Science: Opportunities, Challenges, and Education in Materials Informatics
    Thomas J. Oweida
    Akhlak Mahmood
    Matthew D. Manning
    Sergei Rigin
    Yaroslava G. Yingling
    MRS Advances, 2020, 5 : 329 - 346
  • [25] Roadmap on data-centric materials science
    Bauer, Stefan
    Benner, Peter
    Bereau, Tristan
    Blum, Volker
    Boley, Mario
    Carbogno, Christian
    Catlow, C. Richard A.
    Dehm, Gerhard
    Eibl, Sebastian
    Ernstorfer, Ralph
    Fekete, Adam
    Foppa, Lucas
    Fratzl, Peter
    Freysoldt, Christoph
    Gault, Baptiste
    Ghiringhelli, Luca M.
    Giri, Sajal K.
    Gladyshev, Anton
    Goyal, Pawan
    Hattrick-Simpers, Jason
    Kabalan, Lara
    Karpov, Petr
    Khorrami, Mohammad S.
    Koch, Christoph T.
    Kokott, Sebastian
    Kosch, Thomas
    Kowalec, Igor
    Kremer, Kurt
    Leitherer, Andreas
    Li, Yue
    Liebscher, Christian H.
    Logsdail, Andrew J.
    Lu, Zhongwei
    Luong, Felix
    Marek, Andreas
    Merz, Florian
    Mianroodi, Jaber R.
    Neugebauer, Joerg
    Pei, Zongrui
    Purcell, Thomas A. R.
    Raabe, Dierk
    Rampp, Markus
    Rossi, Mariana
    Rost, Jan-Michael
    Saal, James
    Saalmann, Ulf
    Sasidhar, Kasturi Narasimha
    Saxena, Alaukik
    Sbailo, Luigi
    Scheidgen, Markus
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2024, 32 (06)
  • [26] Big data and machine learning for materials science
    Rodrigues J.F., Jr.
    Florea L.
    de Oliveira M.C.F.
    Diamond D.
    Oliveira O.N., Jr.
    Discover Materials, 1 (1):
  • [27] Data-centric science for materials innovation
    Tanaka, Isao
    Rajan, Krishna
    Wolverton, Christopher
    MRS BULLETIN, 2018, 43 (09) : 659 - 663
  • [28] Setting standards for data driven materials science
    Butler, Keith T.
    Choudhary, Kamal
    Csanyi, Gabor
    Ganose, Alex M.
    Kalinin, Sergei V.
    Morgan, Dane
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [29] Big data are shaping the future of materials science
    Ashley A. White
    MRS Bulletin, 2013, 38 : 594 - 595
  • [30] Data-centric science for materials innovation
    Isao Tanaka
    Krishna Rajan
    Christopher Wolverton
    MRS Bulletin, 2018, 43 : 659 - 663