(Para-)Holomorphic and Conjugate Connections on (Para-)Hermitian and (Para-)Kähler Manifolds

被引:0
|
作者
Sergey Grigorian
Jun Zhang
机构
[1] University of Texas Rio Grande Valley,School of Mathematical and Statistical Sciences
[2] University of Michigan,Department of Psychology and Department of Mathematics
来源
Results in Mathematics | 2019年 / 74卷
关键词
Codazzi coupling; conjugate connection; torsion; Nijenhuis tensor; holomorphic connection; 32Q15; 32Q60; 53B05; 53B35; 53D05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate how an affine connection ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} that generally admits torsion interacts with both g and L on an almost (para-)Hermitian manifold (M,g,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathfrak {M},g,L)$$\end{document}, where L denotes either an almost complex structure J with J2=-id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{2}=-\hbox {id}$$\end{document} or an almost para-complex structure K with K2=id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{2}=\hbox {id}$$\end{document}. We show that ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} becomes (para-)holomorphic and L becomes integrable if and only if the pair (∇,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (\nabla ,L)$$\end{document} satisfies a torsion coupling condition. We investigate (para-)Hermitian manifolds M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document} in which this torsion coupling condition is satisfied by the following four connections (all possibly carrying torsion): ∇,∇L,∇∗,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ,\nabla ^{L},\nabla ^{*},$$\end{document} and ∇†=∇∗L=∇L∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^\dagger = \nabla ^{*L}=\nabla ^{L*}$$\end{document}, where ∇L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^{L}$$\end{document} and ∇∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^{*}$$\end{document} are, respectively, L-conjugate and g-conjugate transformations of ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document}. This leads to the following special cases (where T stands for torsion): (i) the case of T=T∗,TL=T†\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = T^*, T^L = T^\dagger $$\end{document}, for which all four connections are Codazzi-coupled to g, but dω≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\omega \ne 0$$\end{document}, whence M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document} is called Codazzi-(para-)Hermitian; (ii) the case of T=-T†,TL=-T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = - T^{\dagger }, T^L = - T^{*}$$\end{document}, for which dω=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \omega = 0$$\end{document}, i.e., the manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}$$\end{document} becomes (para-)Kähler. In the latter case, quadruples of (para-)holomorphic connections all with non-vanishing torsions may exist in (para-)Kähler manifolds, complementing the result of Fei and Zhang (Results Math 72:2037–2056, 2017) showing the existence of pairs of torsion-free connections, each Codazzi-coupled to both g and L, in Codazzi-(para-)Kähler manifolds.
引用
收藏
相关论文
共 50 条
  • [41] Interaction of Codazzi Couplings with (Para-)Kahler Geometry
    Fei, Teng
    Zhang, Jun
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 2037 - 2056
  • [42] The absorption spectra of para- and diamagnetic nickel complexes
    Mills, JE
    Mellor, DP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1942, 64 : 181 - 182
  • [43] The Gans theory of dia-, para- and metamagnetism
    Livens, GH
    ANNALEN DER PHYSIK, 1924, 75 (24) : 819 - 824
  • [44] BIOLOGICAL CHANGES OF PARA-(AMINOETHYL)-PHENYLSULFONYL COMPOUNDS
    MOMOSE, T
    TOMOEDA, M
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 1952, 72 (12): : 1614 - 1616
  • [45] PARA- AND POST-MENOPAUSAL UTERINE DYSTROPHIES
    LEMAITRE, G
    LHERMINE, C
    EMPEREUR.R
    JOURNAL DE RADIOLOGIE D ELECTROLOGIE ET DE MEDECINE NUCLEAIRE, 1968, 49 (8-9): : 581 - +
  • [46] ontho- and para- oxy-hydrindon
    von Auwers, K
    Hilliger, E
    BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, 1916, 49 : 2410 - 2413
  • [47] Laufband (treadmill) therapy in incomplete para- and tetraplegia
    Wernig, A
    Nanassy, A
    Müller, S
    SPINAL CORD PLASTICITY: ALTERATIONS IN REFLEX FUNCTION, 2001, : 225 - 239
  • [48] CONTRASTING SOLID-STATE STRUCTURES FOR 2 NEMATOGENIC BENZYLIDENEANILINES - CRYSTAL-STRUCTURES OF PARA-[(PARA'-ETHOXYBENZYLIDENE)AMINO]-BENZONITRILE AND PARA-[(PARA'-METHOXYBENZYLIDENE)AMINO]-PHENYL ACETATE
    BRYAN, RF
    FORCIER, PG
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1980, 60 (1-2): : 133 - 151
  • [49] SYNTHESIS OF TRIALKYL[PARA-(VINYLTHIO)PHENYL]SILANES
    VLASOVA, NN
    LVOVA, FP
    KOMAROV, NV
    PONOMARE.SM
    SAKHAROV.VG
    JOURNAL OF GENERAL CHEMISTRY USSR, 1969, 39 (12): : 2644 - &
  • [50] Quasiparticles in CMR oxides in para- and ferromagnetic phases
    Gavrichkov, V. A.
    Ovchinnikov, S. G.
    Pchelkina, Z. V.
    Nekrasov, I.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200