Reconstructing 2D images with natural neighbour interpolation

被引:0
|
作者
François Anton
Darka Mioc
Alain Fournier
机构
[1] Department of Computer Science,
[2] University of British Columbia,undefined
[3] 203-2366 Main Mall,undefined
[4] Vancouver,undefined
[5] BC,undefined
[6] V6T 1Z4,undefined
[7] Canada e-mail: fanton@cs.ubc.ca,undefined
[8] Projet Prisme,undefined
[9] INRIA Sophia Antipolis,undefined
[10] B.P. 93,undefined
[11] 06902 Sophia Antipolis Cedex,undefined
[12] France,undefined
[13] Département des Sciences Géomatiques,undefined
[14] Université Laval,undefined
[15] Pavillon Casault,undefined
[16] Ste-Foy,undefined
[17] QC,undefined
[18] G1K 7P4,undefined
[19] Canada e-mail: dmioc@cs.ubc.ca,undefined
来源
The Visual Computer | 2001年 / 17卷
关键词
Key words: Image reconstruction – Irregularly spaced samples – Natural neighbour interpolation – Local coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we explore image reconstruction by natural neighbour interpolation from irregularly spaced samples. We sample the image irregularly with techniques based on the Laplacian or the derivative in the direction of the gradient. Local coordinates based on the Voronoi diagram are used in natural neighbour interpolation to quantify the “neighbourliness” of data sites. Then we use natural neighbour interpolation in order to reconstruct the image. The main result is that the image quality is always very good in the case of the sampling techniques based on the Laplacian.
引用
收藏
页码:134 / 146
页数:12
相关论文
共 50 条
  • [21] A meshless local natural neighbour interpolation method for stress analysis of solids
    Cai, YC
    Zhu, HH
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (06) : 607 - 613
  • [22] Euler Characteristic Transform Based Topological Loss for Reconstructing 3D Images from Single 2D Slices
    Nadimpalli, Kalyan Varma
    Chattopadhyay, Amit
    Rieck, Bastian
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2023, : 571 - 579
  • [23] A novel technique of reconstructing soft tissue enhanced portal images using 2D/3D image fusion
    Jin, J
    Kim, J
    Ajlouni, M
    Pradhan, D
    Hammoud, R
    Guan, H
    Movsas, B
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (02): : S533 - S533
  • [24] Capturing outlines of 2D images
    Sarfraz, M
    Haque, MN
    Khan, MA
    CISST'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, VOLS I AND II, 2000, : 87 - 93
  • [25] Curvature in digital 2D images
    Kovalevsky, V
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2001, 15 (07) : 1183 - 1200
  • [26] Smooth surface reconstruction via natural neighbour interpolation of distance functions
    Boissonnat, JD
    Cazals, F
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 22 (1-3): : 185 - 203
  • [27] Feature Axis Driven 2D Shape Interpolation
    Yang, Wenwu
    Kong, Dingke
    International Journal of Digital Content Technology and its Applications, 2012, 6 (05) : 209 - 217
  • [28] ADAPTIVE RBFN MODEL FOR 2D SPATIAL INTERPOLATION
    Zhang, Q. P.
    Ma, Y. N.
    Lai, L. L.
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 3418 - 3424
  • [29] Improving the Perceptual Quality of 2D Animation Interpolation
    Chen, Shuhong
    Zwicker, Matthias
    COMPUTER VISION - ECCV 2022, PT XVII, 2022, 13677 : 271 - 287
  • [30] On the stability of the 2D interpolation algorithms with uncertain data
    Lamotte, JL
    Delay, F
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (02) : 183 - 201