On conformally flat contact metric manifolds

被引:0
|
作者
Gouli-Andreou F. [1 ]
Tsolakidou N. [1 ]
机构
[1] Aristotle University of Thessaloniki, Department of Mathematics
关键词
conformally flat Riemannian manifold; Contact metric manifold;
D O I
10.1007/s00022-003-1551-z
中图分类号
学科分类号
摘要
In the present paper we classify the conformally flat contact metric manifolds of dimension 2n + 1 (n > 1) satisfying R(·, ξ)ξ = -kφ2. We prove that these manifolds are Sasakian of constant curvature 1. © Birkhäuser Verlag, Basel, 2004.
引用
下载
收藏
页码:75 / 88
页数:13
相关论文
共 50 条
  • [41] A pinching theorem for conformally flat Riemannian manifolds
    Cao, Shunjuan
    Ma, Zongwei
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 11 - 14
  • [42] Positive projectively flat manifolds are locally conformally flat-Kahler Hopf manifolds
    Calamai, Simone
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1139 - 1154
  • [43] The Topological Structure of Conformally Flat Riemannian Manifolds
    Han, Yingbo
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [44] Conformally flat metrics on 4-manifolds
    Kapovich, M
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 66 (02) : 289 - 301
  • [45] A conformally flat contact Riemannian (κ,μ)-space
    Cho, JT
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (04): : 501 - 508
  • [46] Half conformally flat generalized quasi-Einstein manifolds of metric signature (2,2)
    Brozos-Vazquez, Miguel
    Garcia-Rio, Eduardo
    Gilkey, Peter
    Valle-Regueiro, Xabier
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (01)
  • [47] HYPERBOLIC 4-MANIFOLDS AND CONFORMALLY FLAT 3-MANIFOLDS
    GROMOV, M
    LAWSON, HB
    THURSTON, W
    PUBLICATIONS MATHEMATIQUES, 1988, (68): : 27 - 45
  • [48] On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds
    Qing, Jie
    Raske, David
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [49] On the Spectrum of the Curvature Operator of Conformally Flat Riemannian Manifolds
    Gladunova, O. P.
    Rodionov, E. D.
    Slavskii, V. V.
    DOKLADY MATHEMATICS, 2013, 87 (03) : 279 - 281
  • [50] CONFORMALLY FLAT SUB-MANIFOLDS OF CODIMENSION 4
    MOORE, JD
    MORVAN, JM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (08): : 655 - 657