Construction of a class of multivariate compactly supported wavelet bases for L2(ℝd)

被引:0
|
作者
Fengying Zhou
Yunzhang Li
机构
[1] Beijing University of Technology,College of Applied Sciences
来源
关键词
Riesz basis; wavelet; refinable function; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a given d×d expansive matrix M with |detM| = 2, we investigate the compactly supported M-wavelets for L2(ℝd). Starting with a pair of compactly supported refinable functions ϕ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \varphi $\end{document} satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet ψ such that {2j/2ψ(Mj · −k): j ∈ ℤ, k ∈ ℤd} forms a Riesz basis for L2(ℝd). The (anti-)symmetry of such ψ is studied, and some examples are also provided.
引用
收藏
页码:177 / 195
页数:18
相关论文
共 50 条
  • [41] Construction of a class of compactly supported orthogonal vector-valued wavelets
    Sun, Lei
    Cheng, Zhengxing
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 253 - 261
  • [42] Parseval frame wavelet multipliers in L2(ℝd)
    Zhongyan Li
    Xianliang Shi
    [J]. Chinese Annals of Mathematics, Series B, 2012, 33 : 949 - 960
  • [43] A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS
    ALPERT, BK
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) : 246 - 262
  • [44] MCCLELLAN TRANSFORMATION AND THE CONSTRUCTION OF BIORTHOGONAL WAVELET BASES OF L(2)(R(2))
    KAROUI, A
    VAILLANCOURT, R
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (12) : 13 - 26
  • [45] TOPLERIAN (L2)-BASES
    HARTMAN, P
    WINTNER, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (MAR) : 207 - 225
  • [46] TOPLERIAN (L2)-BASES
    HARTMAN, P
    WINTNER, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (07): : 746 - 746
  • [47] Construction of nonseparable symmetric tight wavelet frames of L2(Rn)
    Feng, Yan
    Li, Youfa
    Shen, Yanfeng
    Yang, Shouzhi
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 300 - 307
  • [48] Explicit construction of symmetric orthogonal wavelet frames in L2(RS)
    Li, Youfa
    Yang, Shouzhi
    [J]. JOURNAL OF APPROXIMATION THEORY, 2010, 162 (05) : 891 - 909
  • [49] Construction of a class of compactly supported biorthogonal multiple vector-valued wavelets
    Zhang, TQ
    Chen, QJ
    [J]. COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 2, PROCEEDINGS, 2005, 3802 : 1134 - 1139
  • [50] THE CONSTRUCTION OF TRIVARIATE NONSEPARABLE COMPACTLY SUPPORTED WAVELETS WITH A CLASS OF SPECIAL DILATION MATRIX
    Huang, Yong-Dong
    Zhu, Feng-Juan
    Cheng, Zheng-Xing
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 402 - +