Construction of a class of multivariate compactly supported wavelet bases for L2(ℝd)

被引:0
|
作者
Fengying Zhou
Yunzhang Li
机构
[1] Beijing University of Technology,College of Applied Sciences
来源
关键词
Riesz basis; wavelet; refinable function; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a given d×d expansive matrix M with |detM| = 2, we investigate the compactly supported M-wavelets for L2(ℝd). Starting with a pair of compactly supported refinable functions ϕ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \varphi $\end{document} satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet ψ such that {2j/2ψ(Mj · −k): j ∈ ℤ, k ∈ ℤd} forms a Riesz basis for L2(ℝd). The (anti-)symmetry of such ψ is studied, and some examples are also provided.
引用
收藏
页码:177 / 195
页数:18
相关论文
共 50 条