Trust-region and other regularisations of linear least-squares problems

被引:0
|
作者
C. Cartis
N. I. M. Gould
P. L. Toint
机构
[1] University of Edinburgh,School of Mathematics, The King’s Buildings
[2] Rutherford Appleton Laboratory,Computational Science and Engineering Department
[3] Facultés Universitaires ND de la Paix–University of Namur,Department of Mathematics
[4] 61,undefined
来源
BIT Numerical Mathematics | 2009年 / 49卷
关键词
Linear least-squares; Regularisation; Trust-region; Secular equation; 65F22; 65H05; 65K05; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider methods for regularising the least-squares solution of the linear system Ax=b. In particular, we propose iterative methods for solving large problems in which a trust-region bound ‖x‖≤Δ is imposed on the size of the solution, and in which the least value of linear combinations of ‖Ax−b‖2q and a regularisation term ‖x‖2p for various p and q=1,2 is sought. In each case, one or more “secular” equations are derived, and fast Newton-like solution procedures are suggested. The resulting algorithms are available as part of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{G}$\end{document} ALAHAD optimization library.
引用
收藏
页码:21 / 53
页数:32
相关论文
共 50 条