The QLY least-squares and the QLY least-squares minimal-norm of linear dual least squares problems
被引:10
|
作者:
Wang, Hongxing
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R ChinaGuangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
Wang, Hongxing
[1
]
Cui, Chong
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R ChinaGuangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
Cui, Chong
[1
]
Wei, Yimin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R ChinaGuangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
Wei, Yimin
[2
,3
,4
,5
]
机构:
[1] Guangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
Q In this paper, we define a QLY total order =(Q) over D-m to compare the magnitude of dual vectors. Then we consider the QLY least-squares problem and give its compact formula. Meanwhile, by comparing with a least-squares and the least-squares minimal-norm solutions, we can investigate a QLY least-squares and the QLY least-squares minimal-norm of linear dual least-squares problems. In particular, in the presence of a least-squares solution, we can get a QLY least-squares solution to be more accurate than a least-squares solution under the QLY total order.