The QLY least-squares and the QLY least-squares minimal-norm of linear dual least squares problems

被引:10
|
作者
Wang, Hongxing [1 ]
Cui, Chong [1 ]
Wei, Yimin [2 ,3 ,4 ,5 ]
机构
[1] Guangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 12期
基金
中国国家自然科学基金;
关键词
Dual matrix; dual Moore-Penrose generalized inverse; QLY total order; QLY least-squares; QLY least-squares minimal-norm;
D O I
10.1080/03081087.2023.2223348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Q In this paper, we define a QLY total order =(Q) over D-m to compare the magnitude of dual vectors. Then we consider the QLY least-squares problem and give its compact formula. Meanwhile, by comparing with a least-squares and the least-squares minimal-norm solutions, we can investigate a QLY least-squares and the QLY least-squares minimal-norm of linear dual least-squares problems. In particular, in the presence of a least-squares solution, we can get a QLY least-squares solution to be more accurate than a least-squares solution under the QLY total order.
引用
收藏
页码:1985 / 2002
页数:18
相关论文
共 50 条