Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions

被引:0
|
作者
Weihao Du
Jianglian Xiang
Manchun Tan
机构
[1] Jinan University,College of Information Science and Technology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Discontinuous; Nonlinear activation function; Quaternion-valued neural networks; Multistability;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the coexistence and dynamical behaviors of multiple equilibrium points for quaternion-valued neural networks (QVNNs) are investigated, whose activation functions are discontinuous and nonmonotonic piecewise nonlinear. According to the Hamilton rules, the QVNNs can be divided into four real-valued parts. By utilizing the Brouwer’s Fixed Point Theorem and property of strictly diagonally dominant matrices, some sufficient conditions are derived to ensure that the QVNNs have at least 54n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5^{4n}$$\end{document} equilibrium points, 34n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^{4n}$$\end{document} of them are locally exponentially stable, and the others are unstable. It is shown that the number of stable equilibria in QVNNs is more than that in the real-valued ones. Finally, a numerical simulation is presented to clarify the theoretical analysis is valid.
引用
收藏
页码:5855 / 5884
页数:29
相关论文
共 50 条
  • [41] Scaled Conjugate Gradient Learning for Quaternion-Valued Neural Networks
    Popa, Calin-Adrian
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 243 - 252
  • [42] Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays
    Liu, Yang
    Zhang, Dandan
    Lu, Jianquan
    [J]. NONLINEAR DYNAMICS, 2017, 87 (01) : 553 - 565
  • [43] PolSAR Land Classification by Using Quaternion-Valued Neural Networks
    Shang, Fang
    Hirose, Akira
    [J]. CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 593 - 596
  • [44] Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays
    Yang Liu
    Dandan Zhang
    Jianquan Lu
    [J]. Nonlinear Dynamics, 2017, 87 : 553 - 565
  • [45] Synchronization in Quaternion-Valued Neural Networks with Delay and Stochastic Impulses
    Li, Chengsheng
    Cao, Jinde
    Kashkynbayev, Ardak
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (01) : 691 - 708
  • [46] Enhanced Gradient Descent Algorithms for Quaternion-Valued Neural Networks
    Popa, Calin-Adrian
    [J]. SOFT COMPUTING APPLICATIONS, SOFA 2016, VOL 2, 2018, 634 : 45 - 53
  • [47] Antiperiodic solutions to delayed inertial quaternion-valued neural networks
    Xu, Changjin
    Li, Peiluan
    Liao, Maoxin
    Liu, Zixin
    Xiao, Qimei
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7326 - 7344
  • [48] Synchronization criteria for quaternion-valued coupled neural networks with impulses
    Qi, Xingnan
    Bao, Haibo
    Cao, Jinde
    [J]. NEURAL NETWORKS, 2020, 128 : 150 - 157
  • [49] Zeroing Neural Networks for Dynamic Quaternion-Valued Matrix Inversion
    Xiao, Lin
    Liu, Sai
    Wang, Xin
    He, Yongjun
    Jia, Lei
    Xu, Yang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1562 - 1571
  • [50] Design and Analysis of Quaternion-Valued Neural Networks for Associative Memories
    Chen, Xiaofeng
    Song, Qiankun
    Li, Zhongshan
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (12): : 2305 - 2314