A Discontinuous Spectral Element Model for Boussinesq-Type Equations

被引:0
|
作者
C. Eskilsson
S. J. Sherwin
机构
[1] Chalmers University of Technology,Water Environment Transport
[2] Imperial College of Science,Department of Aeronautics
[3] Technology and Medicine,undefined
来源
关键词
discontinuous spectral element method; Boussinesq-type equations;
D O I
暂无
中图分类号
学科分类号
摘要
We present a discontinuous spectral element model for simulating 1D nonlinear dispersive water waves, described by a set of enhanced Boussinesq-type equations. The advective fluxes are calculated using an approximate Riemann solver while the dispersive fluxes are obtained by centred numerical fluxes. Numerical computation of solitary wave propagation is used to prove the exponential convergence.
引用
收藏
页码:143 / 152
页数:9
相关论文
共 50 条
  • [21] Chebyshev finite-spectral method for 1D Boussinesq-type equations
    Li, YS
    Zhan, JM
    [J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2006, 132 (03) : 212 - 223
  • [22] Chebyshev finite-spectral method for 1D Boussinesq-type equations
    Dept. of Civil and Structural Engineering, Hong Kong Polytechnic Univ., Hong Kong, Hong Kong
    不详
    [J]. J. Waterw. Port Coast. Ocean Eng., 2006, 3 (212-223):
  • [23] Improved Boussinesq-type equations for highly variable depth
    Grajales, Juan Carlos Munoz
    Nachbin, Andre
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (04) : 600 - 633
  • [24] Boussinesq-type equations of hydroelastic waves in shallow water
    Tang, Shanran
    Xiong, Yingfen
    Zhu, Liangsheng
    [J]. JOURNAL OF FLUID MECHANICS, 2024, 985
  • [25] Boussinesq-type equations for wave-current interaction
    Zou, Z. L.
    Hu, P. C.
    Fang, K. Z.
    Liu, Z. B.
    [J]. WAVE MOTION, 2013, 50 (04) : 655 - 675
  • [26] A Domain Decomposition Method for Linearized Boussinesq-Type Equations
    Caldas Steinstraesser, Joao Guilherme
    Kemlin, Gaspard
    Rousseau, Antoine
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (03): : 320 - 340
  • [27] Wave kinematics from Boussinesq-type equations.
    Pedrozo-Acuña, A
    Simmonds, DJ
    Silva-Casarín, R
    [J]. INGENIERIA HIDRAULICA EN MEXICO, 2005, 20 (04): : 69 - 75
  • [28] Improved Boussinesq-type equations for highly variable depth
    Grajales, Juan Carlos Muñoz
    Nachbin, André
    [J]. IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2006, 71 (04): : 600 - 633
  • [29] Boussinesq-type equations for nonlinear evolution of wave trains
    Fang, K. Z.
    Zou, Z. L.
    [J]. WAVE MOTION, 2010, 47 (01) : 12 - 32
  • [30] Existence and asymptotic decay for a Boussinesq-type model
    Munoz Grajales, Juan Carlos
    Rivas Trivino, Ivonne
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 455 - 475