Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system

被引:0
|
作者
Li-hong Zhang
Ze-dong Yang
Guo-tao Wang
Mohammad M. Rashidi
机构
[1] Shanxi Normal University,School of Mathematics and Computer Science
[2] Tongji University,Shanghai Automotive Wind Tunnel Center
关键词
-Hessian system; entire blow-up; classification of radial solutions; monotone iterative method; 35J60; 35B08; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following generalized nonlinear k-Hessian system {G(Sk1k(λ(D2z1)))Sk1k(λ(D2z1))=φ(|x|,z1,z2),x∈ℝN,G(Sk1k(λ(D2z2)))Sk1k(λ(D2z2))=φ(|x|,z1,z2),x∈ℝN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{{\cal G}\left( {S_k^{{1 \over k}}(\lambda ({D^2}{z_1}))} \right)S_k^{{1 \over k}}(\lambda ({D^2}{z_1})) = \varphi (\left| x \right|,{z_1},{z_2}),\,\,\,x \in {\mathbb{R}^N},} \cr {{\cal G}\left( {S_k^{{1 \over k}}(\lambda ({D^2}{z_2}))} \right)S_k^{{1 \over k}}(\lambda ({D^2}{z_2})) = \varphi (\left| x \right|,{z_1},{z_2}),\,\,\,x \in {\mathbb{R}^N},} \cr } \,} \right.$$\end{document} where G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal G}$$\end{document} is a nonlinear operator and Sk (λ(D2z)) stands for the k-Hessian operator. We first are interested in the classification of positive entire k-convex radial solutions for the k-Hessian system if φ(∣x∣, z1, z2) = b(∣x∣)φ(z1, z2) and ψ(∣x∣, z1, z2) = h(∣x∣)ψ(z1). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire k-convex radial solutions of the k-Hessian system with the special non-linearities ψ,φ are given, which improve and extend many previous works.
引用
收藏
页码:564 / 582
页数:18
相关论文
共 50 条
  • [31] k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities
    He, Xingyue
    Gao, Chenghua
    Wang, Jingjing
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [32] Entire positive p-k-convex radial solutions to p-k-Hessian equations and systems
    Shikun Kan
    Xuemei Zhang
    Letters in Mathematical Physics, 2023, 113
  • [33] Entire positive p-k-convex radial solutions to p-k-Hessian equations and systems
    Kan, Shikun
    Zhang, Xuemei
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (01)
  • [34] Existence and asymptotic behavior of strictly convex solutions for singular k-Hessian equations with nonlinear gradient terms
    He, Xingyue
    Gao, Chenghua
    Wang, Jingjing
    Yao, Xiaobin
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (05) : 713 - 725
  • [35] Entire large solutions to the k-Hessian equations with weights: Existence, uniqueness and asymptotic behavior
    Wan, Haitao
    Shi, Yongxiu
    Qiao, Xiaoyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (01)
  • [36] A characterization of semistable radial solutions of k-Hessian equations
    Navarro, Miguel Angel
    Sanchez, Justino
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)
  • [37] EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A (k1, k2)-HESSIAN SYSTEMS WITH CONVECTION TERMS
    Covei, Dragos-Patru
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [38] Existence and multiplicity for negative solutions of k-Hessian equations
    Wei, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 615 - 640
  • [39] Nonexistence of Entire Positive Solution for a Conformal k-Hessian Inequality
    Feida Jiang
    Saihua Cui
    Gang Li
    Czechoslovak Mathematical Journal, 2020, 70 : 311 - 322
  • [40] Existence and nonexistence of radial solutions of the Dirichlet problem for a class of general k-Hessian equations
    He, Jianxin
    Zhang, Xinguang
    Liu, Lishan
    Wu, Yonghong
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (04): : 475 - 492