Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system

被引:0
|
作者
Li-hong Zhang
Ze-dong Yang
Guo-tao Wang
Mohammad M. Rashidi
机构
[1] Shanxi Normal University,School of Mathematics and Computer Science
[2] Tongji University,Shanghai Automotive Wind Tunnel Center
关键词
-Hessian system; entire blow-up; classification of radial solutions; monotone iterative method; 35J60; 35B08; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following generalized nonlinear k-Hessian system {G(Sk1k(λ(D2z1)))Sk1k(λ(D2z1))=φ(|x|,z1,z2),x∈ℝN,G(Sk1k(λ(D2z2)))Sk1k(λ(D2z2))=φ(|x|,z1,z2),x∈ℝN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{{\cal G}\left( {S_k^{{1 \over k}}(\lambda ({D^2}{z_1}))} \right)S_k^{{1 \over k}}(\lambda ({D^2}{z_1})) = \varphi (\left| x \right|,{z_1},{z_2}),\,\,\,x \in {\mathbb{R}^N},} \cr {{\cal G}\left( {S_k^{{1 \over k}}(\lambda ({D^2}{z_2}))} \right)S_k^{{1 \over k}}(\lambda ({D^2}{z_2})) = \varphi (\left| x \right|,{z_1},{z_2}),\,\,\,x \in {\mathbb{R}^N},} \cr } \,} \right.$$\end{document} where G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal G}$$\end{document} is a nonlinear operator and Sk (λ(D2z)) stands for the k-Hessian operator. We first are interested in the classification of positive entire k-convex radial solutions for the k-Hessian system if φ(∣x∣, z1, z2) = b(∣x∣)φ(z1, z2) and ψ(∣x∣, z1, z2) = h(∣x∣)ψ(z1). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire k-convex radial solutions of the k-Hessian system with the special non-linearities ψ,φ are given, which improve and extend many previous works.
引用
收藏
页码:564 / 582
页数:18
相关论文
共 50 条
  • [1] Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system
    ZHANG Li-hong
    YANG Ze-dong
    WANG Guo-tao
    Mohammad M.Rashidi
    Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (04) : 564 - 582
  • [2] Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system
    Zhang Li-hong
    Yang Ze-dong
    Wang Guo-tao
    Rashidi, Mohammad M.
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (04) : 564 - 582
  • [3] Existence of k-Convex Solutions for the k-Hessian Equation
    Bai, Zhanbing
    Yang, Zedong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [4] Entire positive k-convex solutions to k-Hessian type equations and systems
    Bai, Shuangshuang
    Zhang, Xuemei
    Feng, Meiqiang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 481 - 491
  • [5] Existence of k-Convex Solutions for the k-Hessian Equation
    Zhanbing Bai
    Zedong Yang
    Mediterranean Journal of Mathematics, 2023, 20
  • [6] The existence and multiplicity of k-convex solutions for a coupled k-Hessian system
    Gao, Chenghua
    He, Xingyue
    Wang, Jingjing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2615 - 2628
  • [7] THE EXISTENCE AND MULTIPLICITY OF k-CONVEX SOLUTIONS FOR A COUPLED k-HESSIAN SYSTEM
    高承华
    何兴玥
    王晶晶
    Acta Mathematica Scientia, 2023, 43 (06) : 2615 - 2628
  • [8] The existence and multiplicity of k-convex solutions for a coupled k-Hessian system
    Chenghua Gao
    Xingyue He
    Jingjing Wang
    Acta Mathematica Scientia, 2023, 43 : 2615 - 2628
  • [9] Existence and nonexistence of entire k-convex radial solutions to Hessian type system
    Cui, Jixian
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Existence and nonexistence of entire k-convex radial solutions to Hessian type system
    Jixian Cui
    Advances in Difference Equations, 2021