The primal-dual method for approximation algorithms

被引:0
|
作者
David P. Williamson
机构
[1] IBM T.J. Watson Research Center and IBM Almaden Research Center,
来源
Mathematical Programming | 2002年 / 91卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to NP-hard problems in combinatorial optimization. Because of parallels with the primal-dual method commonly used in combinatorial optimization, we call it the primal-dual method for approximation algorithms. We show how this technique can be used to derive approximation algorithms for a number of different problems, including network design problems, feedback vertex set problems, and facility location problems.
引用
收藏
页码:447 / 478
页数:31
相关论文
共 50 条
  • [31] A primal-dual perspective of online learning algorithms
    Shai Shalev-Shwartz
    Yoram Singer
    [J]. Machine Learning, 2007, 69 : 115 - 142
  • [32] PRIMAL-DUAL ALGORITHMS FOR OPTIMIZATION WITH STOCHASTIC DOMINANCE
    Haskell, William B.
    Shanthikumar, J. George
    Shen, Z. Max
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 34 - 66
  • [33] CONSTANT POTENTIAL PRIMAL-DUAL ALGORITHMS - A FRAMEWORK
    TUNCEL, L
    [J]. MATHEMATICAL PROGRAMMING, 1994, 66 (02) : 145 - 159
  • [34] Primal-Dual Approximation Algorithms for Node-Weighted Steiner Forest on Planar Graphs
    Moldenhauer, Carsten
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT I, 2011, 6755 : 748 - 759
  • [35] Primal-dual approximation algorithms for Node-Weighted Steiner Forest on planar graphs
    Moldenhauer, Carsten
    [J]. INFORMATION AND COMPUTATION, 2013, 222 : 293 - 306
  • [36] Primal-Dual Approximation Algorithms for Submodular Vertex Cover Problems with Linear/Submodular Penalties
    Xu, Dachuan
    Wang, Fengmin
    Du, Donglei
    Wu, Chenchen
    [J]. COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 336 - 345
  • [37] QUADRATIC CONVERGENCE IN A PRIMAL-DUAL METHOD
    MEHROTRA, S
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (03) : 741 - 751
  • [38] ON SIMPLIFYING THE PRIMAL-DUAL METHOD OF MULTIPLIERS
    Zhang, Guoqiang
    Heusdens, Richard
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4826 - 4830
  • [39] Distributed Regularized Primal-Dual Method
    Badiei, Masoud
    Li, Na
    [J]. 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 540 - 544
  • [40] A primal-dual method for SVM training
    Djemai, Samia
    Brahmi, Belkacem
    Bibi, Mohand Ouamer
    [J]. NEUROCOMPUTING, 2016, 211 : 34 - 40