Numerical analysis of a highly birefringent microstructured optical fiber with an anisotropic core

被引:0
|
作者
Michal Swat
Bartlomiej Salski
Tomasz Karpisz
Grzegorz Stepniewski
Ireneusz Kujawa
Mariusz Klimczak
Ryszard Buczynski
机构
[1] Warsaw University of Technology,Institute of Radioelectronics
[2] Institute of Electronic Materials Technology,Faculty of Physics
[3] University of Warsaw,undefined
来源
关键词
Highly birefringent fiber; Microstructure fibers; Anisotropic materials; Finite difference time domain method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, modeling and optimization of a highly birefringent microstructured optical fiber with an anisotropic structure of a lamellar core is analyzed. The core consists of a linear stack of a high refractive index lead oxide glass F2 and a low refractive index borosilicate glass NC21A, which contributes to the anisotropy of two orthogonal polarizations of the fundamental mode propagating in the fiber. It is shown, that an appropriate choice of thickness and width of the layers constituting the core structure, enables reducing the dispersion of birefringence of the considered modes, in a wide spectral range. It is further investigated how a sub-wavelength defect, in form of a low refractive index glass introduced in the middle of the core, influences fiber’s birefringence. We show for the first time, that nanodefect introduced into a lamellar core structure further reduces dispersion of birefringence in the fiber over one octave range. An average birefringence of 1.95×10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.95\times 10^{-3}$$\end{document} with variation below 5 % is achieved in 800–2,000 nm bandwidth.
引用
收藏
页码:77 / 88
页数:11
相关论文
共 50 条
  • [21] Simulation of the Sensing Performance of a Plasmonic Biosensor Based on Birefringent Solid-Core Microstructured Optical Fiber
    Popescu, V. A.
    Puscas, N. N.
    Perrone, G.
    [J]. PLASMONICS, 2017, 12 (03) : 905 - 911
  • [22] Highly birefringent fiber has layered core
    Hitz, B
    [J]. PHOTONICS SPECTRA, 2005, 39 (12) : 84 - 85
  • [23] Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core
    Saez-Rodriguez, D.
    Nielsen, K.
    Rasmussen, H. K.
    Bang, O.
    Webb, D. J.
    [J]. OPTICS LETTERS, 2013, 38 (19) : 3769 - 3772
  • [24] Highly birefringent microstructured optical fiber for distributed hydrostatic pressure sensing with sub-bar resolution
    Mikhailov, Sergei
    Matthes, Anne
    Bierlich, Jorg
    Kobelke, Jens
    Wondraczek, Katrin
    Berghmans, Francis
    Geernaert, Thomas
    [J]. OPTICS EXPRESS, 2022, 30 (11) : 19961 - 19973
  • [25] Fiber Bragg Gratings in few-mode highly birefringent microstructured optical fibers for sensing applications
    Tenderenda, T.
    Murawski, M.
    Szymanski, M.
    Becker, M.
    Rothhardt, M.
    Bartelt, H.
    Mergo, P.
    Poturaj, K.
    Makara, M.
    Skorupski, K.
    Marc, P.
    Jaroszewicz, L. R.
    Nasilowski, T.
    [J]. 22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421
  • [26] Rocking filter induced mechanically in a highly birefringent microstructured polymer fiber
    Statkiewicz-Barabach, Gabriela
    Mergo, Pawel
    Urbanczyk, Waclaw
    [J]. APPLIED OPTICS, 2014, 53 (32) : 7729 - 7734
  • [27] Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications
    Vincetti, L.
    [J]. OPTICAL FIBER TECHNOLOGY, 2009, 15 (04) : 398 - 401
  • [28] Fiber Bragg grating inscription in few-mode highly birefringent microstructured fiber
    Tenderenda, Tadeusz
    Murawski, Michal
    Szymanski, Michal
    Szostkiewicz, Lukasz
    Becker, Martin
    Rothhardt, Manfred
    Bartelt, Hartmut
    Mergo, Pawel
    Skorupski, Krzysztof
    Marc, Pawel
    Jaroszewicz, Leszek R.
    Nasilowski, Tomasz
    [J]. OPTICS LETTERS, 2013, 38 (13) : 2224 - 2226
  • [29] Resonant interaction between two core modes in a plasmonic biosensor based on a birefringent solid-core microstructured optical fiber
    Popescu, Vasile A.
    Sharma, Anuj K.
    [J]. OSA CONTINUUM, 2018, 1 (02) : 496 - 505
  • [30] Highly birefringent polymer microstructured optical fibers embedded in composite materials
    Lesiak, P.
    Szelag, M.
    Kuczkowski, M.
    Domanski, A. W.
    Wolinski, T. R.
    [J]. FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS, 2013, 8794