Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD

被引:0
|
作者
T. Hasebe
S. Kashima
P. A. R. Ade
Y. Akiba
D. Alonso
K. Arnold
J. Aumont
C. Baccigalupi
D. Barron
S. Basak
S. Beckman
J. Borrill
F. Boulanger
M. Bucher
E. Calabrese
Y. Chinone
H.-M. Cho
A. Cukierman
D. W. Curtis
T. de Haan
M. Dobbs
A. Dominjon
T. Dotani
L. Duband
A. Ducout
J. Dunkley
J. M. Duval
T. Elleflot
H. K. Eriksen
J. Errard
J. Fischer
T. Fujino
T. Funaki
U. Fuskeland
K. Ganga
N. Goeckner-Wald
J. Grain
N. W. Halverson
T. Hamada
M. Hasegawa
K. Hattori
M. Hattori
L. Hayes
M. Hazumi
N. Hidehira
C. A. Hill
G. Hilton
J. Hubmayr
K. Ichiki
T. Iida
机构
[1] Aoyama Gakuin University,Astronomical Institute, Graduate School of Science
[2] Tohoku University,AstroParticule et Cosmologie (APC)
[3] Univ Paris Diderot,Center for Astrophysics and Space Astronomy
[4] CNRS/IN2P3,Computational Cosmology Center
[5] CEA/Irfu,DAMTP
[6] Obs de Paris,Department of Astronomy
[7] University of Colorado,Department of Astrophysical and Planetary Sciences
[8] CNRS,Department of Astrophysical Sciences
[9] IRAP,School of Physics
[10] Lawrence Berkeley National Laboratory,Department of Physics
[11] University of Cambridge,Department of Physics
[12] The University of Tokyo,Department of Physics
[13] University of Colorado,Department of Physics
[14] Princeton University,Department of Physics
[15] Indian Institute of Science Education and Research Thiruvananthapuram,Department of Physics
[16] Okayama University,CEA, INAC
[17] Stanford University,SBT
[18] The University of Tokyo,Institut d’Astrophysique Spatiale (IAS), CNRS, UMR 8617
[19] University of California,Institute of Physics
[20] University of California,Institute of Space and Astronautical Science (ISAS)
[21] University of Colorado,Research and Development Directorate
[22] University of Grenoble Alpes,Institute of Theoretical Astrophysics
[23] High Energy Accelerator Research Organization (KEK),Kavli Institute for Particle Astrophysics and Cosmology (KIPAC)
[24] Université Paris-Sud 11,Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS
[25] Academia Sinica,Kobayashi
[26] Japan Aerospace Exploration Agency (JAXA),Maskawa Institute for the Origin of Particle and the Universe
[27] Japan Aerospace Exploration Agency (JAXA),Laboratoire de l’Accélérateur Linéaire (LAL), Univ. Paris
[28] University of Oslo,Sud, CNRS/IN2P3
[29] International School for Advanced Studies (SISSA),Physics Department
[30] Kansei Gakuin University,Physics Division
[31] Kavli Institute for Cosmology Cambridge,Radio Astronomy Laboratory
[32] SLAC National Accelerator Laboratory,School of Physics and Astronomy
[33] The University of Tokyo,Space Sciences Laboratory
[34] Kitazato University,Division of Physics, Faculty of Pure and Applied Sciences
[35] Nagoya University,undefined
[36] Université Paris-Saclay,undefined
[37] Max-Planck-Institut for Astrophysics,undefined
[38] National Astronomical Observatory of Japan (NAOJ),undefined
[39] National Institute for Fusion Science (NIFS),undefined
[40] National Institute of Advanced Industrial Science and Technology (AIST),undefined
[41] National Institute of Information and Communications Technology (NICT),undefined
[42] National Institute of Standards and Technology (NIST),undefined
[43] Osaka Prefecture University,undefined
[44] Osaka University,undefined
[45] Oxford Astrophysics,undefined
[46] McGill University,undefined
[47] Lawrence Berkeley National Laboratory,undefined
[48] University of California,undefined
[49] RIKEN,undefined
[50] Saitama University,undefined
来源
关键词
Cosmic microwave background radiation; Inflation; Satellite; Telescope;
D O I
暂无
中图分类号
学科分类号
摘要
The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1–3.2% at 101–448 GHz.
引用
收藏
页码:841 / 850
页数:9
相关论文
共 50 条
  • [41] Wide Frequency Range Optical Synthesizer With High-Frequency Resolution
    Kiuchi, Hitoshi
    Kawanishi, Tetsuya
    Kanno, Atsushi
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (01) : 78 - 81
  • [42] Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics
    Tsujino, J
    Harada, Y
    Ihara, S
    Kasahara, K
    Shimizu, M
    Ueoka, T
    ULTRASONICS, 2004, 42 (1-9) : 125 - 129
  • [43] Heat dissipation of rotation mechanism of polarization modulator unit for LiteBIRD Low-Frequency Telescope
    Hasebe, Takashi
    Ghigna, Tommaso
    Hoang, Thuong D.
    Hoshino, Yurika
    Iida, Teruhito
    Katayama, Nobuhiko
    Matsumura, Tomotake
    Ohsaki, Hiroyuki
    Sakurai, Yuki
    Sugiyama, Shinya
    Takaku, Ryota
    Terao, Yutaka
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180
  • [44] Optical properties of high-frequency radio sources from the Australia Telescope 20 GHz (AT20G) Survey
    Mahony, Elizabeth K.
    Sadler, Elaine M.
    Croom, Scott M.
    Ekers, Ronald D.
    Bannister, Keith W.
    Chhetri, Rajan
    Hancock, Paul J.
    Johnston, Helen M.
    Massardi, Marcella
    Murphy, Tara
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (04) : 2651 - 2675
  • [45] Antenna pattern measurements of a LiteBIRD Low-Frequency Telescope scaled antenna in a cryogenic chamber
    Takakura, Hayato
    Sekimoto, Yutaro
    Odagiri, Kimihide
    Takahashi, Rion
    Miura, Fumiya
    Matsuda, Frederick
    Oguri, Shugo
    SPACE TELESCOPES AND INSTRUMENTATION 2024: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2024, 13092
  • [46] Antenna pattern measurements of a LiteBIRD Low-Frequency Telescope scaled antenna in a cryogenic chamber
    Takakura, Hayato
    Sekimoto, Yutaro
    Odagiri, Kimihide
    Takahashi, Rion
    Miura, Fumiya
    Matsuda, Frederick
    Oguri, Shugo
    Proceedings of SPIE - The International Society for Optical Engineering, 2024, 13092
  • [47] High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook
    Lemay, Serge G.
    Laborde, Cecilia
    Renault, Christophe
    Cossettini, Andrea
    Selmi, Luca
    Widdershoven, Frans P.
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (10) : 2355 - 2362
  • [48] A Simple Contactless High-Frequency Electromagnetic Sensor: Proof of Concept
    Yuskina, Ekaterina
    Makarov, Nikodim
    Khaydukova, Maria
    Filatenkova, Tatiana
    Shamova, Olga
    Semenov, Valentin
    Panchuk, Vitaly
    Kirsanov, Dmitry
    ANALYTICAL CHEMISTRY, 2022, 94 (35) : 11978 - 11982
  • [49] HIGH-FREQUENCY(ACCELERATION)DIRECT BODY BALLISTOCARDIOGRAPHY - NEW CONCEPT
    WINER, NJ
    CIRCULATION, 1971, 44 (04) : 240 - &
  • [50] About a Study of High-Frequency Discharge
    Chatterjee, B. D.
    ZEITSCHRIFT FUR PHYSIK, 1930, 62 (9-10): : 712 - 718