Research on Wind Turbines Fault Diagnosis Technology Based on CMS Data Feature Extraction

被引:0
|
作者
Shiyao QIN
Ruiming WANG
Deyi FU
机构
[1] State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems (China Electric Power Research Institute),
来源
Wireless Personal Communications | 2022年 / 127卷
关键词
Fault diagnosis; CMS data; CEEMD; Wind turbine; Condition monitoring;
D O I
暂无
中图分类号
学科分类号
摘要
As a rich clean and environmentally friendly renewable resources, wind energy has emerged as a strategic choice for countries around the world. Because the wind turbines often operate in severe working conditions such as variable load and large temperature difference they are prone to failures and possible shutdowns. The shutdowns however seriously affect the economic benefits of the wind turbines. Initiative maintenance has become a worldwide recognized scientific method for planning and determining preventive maintenance work, the implementation of this strategy relies on real-time condition monitoring and fault signal identification methods. The condition monitoring of wind turbine can help master the health state and power generation performance of wind turbine, so as to timely formulate maintenance strategies and adopt technical modification measures to improve power generation performance, reduce the down time of wind turbine, avoid the occurrence of major faults, save maintenance cost and improve power generation capacity. Therefore, a condition monitoring system is built on a wind turbine of Zhangjiakou, and a systematic signal analysis method is proposed, time-domain synchronous averaging technology, based on variable period, impulse signal feature extraction technology based on Teager and signal decomposition technology based on CEEMD. The proposed method realizes the signal analysis and feature extraction of non-stationary nonlinear, weak signal and frequency aliasing signals, and successfully diagnose the gearbox secondary meshing failure during the long-term monitoring. This confirms that the monitoring system methods and signal analysis technology proposed in this paper can effectively realize the condition monitoring and fault diagnosis of wind turbines.
引用
收藏
页码:271 / 291
页数:20
相关论文
共 50 条
  • [21] A fault diagnosis based on LSSVM and Bayesian probability for wind turbines
    Zhang, Yuxian
    Yan, Shuqing
    Qian, Xiaoyi
    Zhao, Mengru
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4101 - 4106
  • [22] A review on neurocomputing based wind turbines fault diagnosis and prognosis
    Baltazar, Sergio
    Daniel, Helder
    de Oliveira, Jose Valente
    Li, Chuan
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 437 - 443
  • [23] Fault Diagnosis for Wind Turbines Based on Vibration Signal Analysis
    Zhen, Chenggang
    Zhang, Yinyin
    PROGRESS IN POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2012, 354-355 : 458 - 461
  • [24] Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion
    Xiao, Yancai
    Xue, Jinyu
    Zhang, Long
    Wang, Yujia
    Li, Mengdi
    ENTROPY, 2021, 23 (02) : 1 - 20
  • [25] Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection
    Buchaiah, Sandaram
    Shakya, Piyush
    MEASUREMENT, 2022, 188
  • [26] A methodology for transformer fault diagnosis based on the feature extraction from DGA data
    Rao, Shaowei
    Yang, Shiyou
    Zou, Guoping
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 71 : S313 - S320
  • [27] A Data-Driven Residual-Based Method for Fault Diagnosis and Isolation in Wind Turbines
    Li, Mengshi
    Yu, Da
    Chen, Ziming
    Xiahou, Kaishun
    Ji, Tianyao
    Wu, Q. H.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (02) : 895 - 904
  • [28] Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data
    Dao, Phong B.
    RENEWABLE ENERGY, 2022, 185 : 641 - 654
  • [29] Fault Diagnosis of Photovoltaic Modules Based on Feature Extraction
    Wang, Xueqi
    Cao, Lixia
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT III, 2025, 2183 : 326 - 338
  • [30] Feature Extraction and Fault Diagnosis Based on FDM and RCMDE
    Zuo H.
    Liu X.
    Hong L.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2021, 41 (03): : 539 - 546