Proposed physical mechanism that gives rise to cosmic inflation

被引:0
|
作者
Bruce M. Law
机构
[1] Kansas State University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Early in the Universe a chemical equilibrium exists between photons and electron–positron (e-e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{ - } e^{ + }$$\end{document}) pairs. In the electron Born self-energy (eBse) model the e-e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{ - } e^{ + }$$\end{document} plasma falls out of equilibrium above a glass transition temperature TG=1.06×1017K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{G} = 1.06 \times 10^{17} K$$\end{document} determined by the maximum electron/positron number density of 1/(2Re)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(2R_{e} )^{3}$$\end{document} where Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{e}$$\end{document} is the electron radius. In the glassy phase (T>TG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > T_{G}$$\end{document}) the Universe undergoes exponential acceleration, characteristic of cosmic inflation, with a constant potential energy density ψG=1.9×1050J/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi_{G} = 1.9 \times 10^{50} J/m^{3}$$\end{document}. At lower temperatures T<TG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T < T_{G}$$\end{document} photon-e-e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{ - } e^{ + }$$\end{document} chemical equilibrium is restored and the glassy phase gracefully exits to the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda CDM$$\end{document} cosmological model when the equation of state w=1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w = 1/3$$\end{document}, corresponding to a cross-over temperature TX=0.94×1017K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{X} = 0.94 \times 10^{17} K$$\end{document}. In the eBse model the inflaton scalar field is temperature T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} where the potential energy density ψ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (T)$$\end{document} is a plateau potential, in agreement with Planck collaboration 2013 findings. There are no free parameters that require fine tuning to give cosmic inflation in the eBse model.
引用
收藏
相关论文
共 50 条
  • [31] On degenerate models of cosmic inflation
    Gwyn, Rhiannon
    Palma, Gonzalo A.
    Sakellariadou, Mairi
    Sypsas, Spyros
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (10):
  • [32] Inflation and the cosmic microwave background
    Liddle, AR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 307 (1-4): : 53 - 60
  • [33] Searching for the imprint of cosmic inflation
    Pryke, Clement
    NATURE ASTRONOMY, 2020, 4 (12) : 1204 - 1204
  • [34] Cosmic Inflation and Genetic Algorithms
    Abel, Steve A.
    Constantin, Andrei
    Harvey, Thomas R.
    Lukas, Andre
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2023, 71 (01):
  • [35] Searching for the imprint of cosmic inflation
    Clement Pryke
    Nature Astronomy, 2020, 4 : 1204 - 1204
  • [36] Inflation and the cosmic microwave background
    Liddle, AR
    3 K COSMOLOGY: EC-TMR CONFERENCE, 1999, 476 : 11 - 17
  • [37] Inflation and the Cosmic Microwave Background
    Andrew R. Liddle
    Astrophysics and Space Science, 1998, 261 : 281 - 290
  • [38] Symmetry gives rise to an elegant catastrophe
    Garmon, Savannah
    NATURE PHYSICS, 2023, 19 (08) : 1073 - 1074
  • [39] WHAT GIVES RISE TO PERCEPTION OF MOTION
    GIBSON, JJ
    PSYCHOLOGICAL REVIEW, 1968, 75 (04) : 335 - &
  • [40] The Coming Rise in Residential Inflation*
    Bolhuis, Marijn A.
    Cramer, Judd N. L.
    Summers, Lawrence H.
    REVIEW OF FINANCE, 2022, 26 (05) : 1051 - 1072