Proposed physical mechanism that gives rise to cosmic inflation

被引:0
|
作者
Bruce M. Law
机构
[1] Kansas State University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Early in the Universe a chemical equilibrium exists between photons and electron–positron (e-e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{ - } e^{ + }$$\end{document}) pairs. In the electron Born self-energy (eBse) model the e-e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{ - } e^{ + }$$\end{document} plasma falls out of equilibrium above a glass transition temperature TG=1.06×1017K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{G} = 1.06 \times 10^{17} K$$\end{document} determined by the maximum electron/positron number density of 1/(2Re)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(2R_{e} )^{3}$$\end{document} where Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{e}$$\end{document} is the electron radius. In the glassy phase (T>TG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > T_{G}$$\end{document}) the Universe undergoes exponential acceleration, characteristic of cosmic inflation, with a constant potential energy density ψG=1.9×1050J/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi_{G} = 1.9 \times 10^{50} J/m^{3}$$\end{document}. At lower temperatures T<TG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T < T_{G}$$\end{document} photon-e-e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{ - } e^{ + }$$\end{document} chemical equilibrium is restored and the glassy phase gracefully exits to the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda CDM$$\end{document} cosmological model when the equation of state w=1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w = 1/3$$\end{document}, corresponding to a cross-over temperature TX=0.94×1017K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{X} = 0.94 \times 10^{17} K$$\end{document}. In the eBse model the inflaton scalar field is temperature T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} where the potential energy density ψ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (T)$$\end{document} is a plateau potential, in agreement with Planck collaboration 2013 findings. There are no free parameters that require fine tuning to give cosmic inflation in the eBse model.
引用
收藏
相关论文
共 50 条
  • [1] Proposed physical mechanism that gives rise to cosmic inflation
    Law, Bruce M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] The rise and fall of cosmic inflation
    Slezak, Michael
    NEW SCIENTIST, 2014, 224 (2989) : 8 - 8
  • [3] Towards the physical vacuum of cosmic inflation
    Jiang, Hongliang
    Wang, Yi
    PHYSICS LETTERS B, 2016, 760 : 202 - 206
  • [4] COSMIC INFLATION AND COSMIC STRING
    LI, YJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (08) : 1417 - 1420
  • [5] Cosmic inflation
    Mukhanov, V.
    COSMOLOGY AND GRAVITATION, 2007, 910 : 40 - 54
  • [6] Cosmic inflation
    Albrecht, Andreas
    POST-PLANCK COSMOLOGY, 2015, : 1 - 15
  • [7] What Is Cosmic Inflation?
    Lincoln, Don
    PHYSICS TEACHER, 2024, 62 (04): : 250 - 254
  • [8] COSMIC STRINGS AND INFLATION
    VISHNIAC, ET
    OLIVE, KA
    SECKEL, D
    NUCLEAR PHYSICS B, 1987, 289 (3-4) : 717 - 734
  • [9] Causality and cosmic inflation
    Vachaspati, T
    Trodden, M
    PHYSICAL REVIEW D, 2000, 61 (02)
  • [10] Cosmic Inflation at the crossroads
    Martin, Jerome
    Ringeval, Christophe
    Vennin, Vincent
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (07):