Varieties of minimal rational tangents on double covers of projective space

被引:1
|
作者
Jun-Muk Hwang
Hosung Kim
机构
[1] Korea Institute for Advanced Study,
来源
Mathematische Zeitschrift | 2013年 / 275卷
关键词
Double covers of projective space; Fano manifolds; Varieties of minimal rational tangents; 14J45;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : X \rightarrow \mathbb{P }^n$$\end{document} be a double cover branched along a smooth hypersurface of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m, 2 \le m \le n-1$$\end{document}. We study the varieties of minimal rational tangents \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C }_x \subset \mathbb{P }T_x(X)$$\end{document} at a general point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}. We describe the homogeneous ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C }_x$$\end{document} and show that the projective isomorphism type of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C }_x$$\end{document} varies in a maximal way as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} varies over general points of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}. Our description of the ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C }_x$$\end{document} implies a certain rigidity property of the covering morphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. As an application of this rigidity, we show that any finite morphism between such double covers with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n-1$$\end{document} must be an isomorphism. We also prove that Liouville-type extension property holds with respect to minimal rational curves on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}.
引用
收藏
页码:109 / 125
页数:16
相关论文
共 50 条
  • [31] Ulrich bundles on double covers of projective spaces
    Kumar, N. Mohan
    Narayanan, Poornapushkala
    Parameswaran, A. J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (06)
  • [32] RATIONAL INTERSECTION COHOMOLOGY OF PROJECTIVE TORIC VARIETIES
    FIESELER, KH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 413 : 88 - 98
  • [33] Existence of rational points on smooth projective varieties
    Poonen, Bjorn
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (03) : 529 - 543
  • [34] Birationally Rigid Finite Covers of the Projective Space
    Pukhlikov, A. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (01) : 232 - 244
  • [35] Birationally Rigid Finite Covers of the Projective Space
    A. V. Pukhlikov
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 232 - 244
  • [36] ALBANESE VARIETIES OF CYCLIC COVERS OF THE PROJECTIVE PLANE AND ORBIFOLD PENCILS
    Artal Bartolo, E.
    Cogolludo-Agustin, J. I.
    Libgober, A.
    NAGOYA MATHEMATICAL JOURNAL, 2017, 227 : 189 - 213
  • [37] On the distribution of rational points on ramified covers of abelian varieties
    Corvaja, Pietro
    Demeio, Julian Lawrence
    Javanpeykar, Ariyan
    Lombardo, Davide
    Zannier, Umberto
    COMPOSITIO MATHEMATICA, 2022, 158 (11) : 2109 - 2155
  • [38] Double fibres and double covers: Paucity of rational points
    ColliotThelene, JL
    Skorobogatov, AN
    SwinnertonDyer, P
    ACTA ARITHMETICA, 1997, 79 (02) : 113 - 135
  • [39] Characterization of projective varieties beyond varieties of minimal degree and del Pezzo varieties
    Han, Jong In
    Kwak, Sijong
    Park, Euisung
    JOURNAL OF ALGEBRA, 2023, 636 : 732 - 756
  • [40] VARIETIES OF SMALL CODIMENSION IN PROJECTIVE SPACE
    HARTSHORNE, R
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (06) : 1017 - 1032