Gouyon waves in water of finite depth

被引:0
|
作者
A. A. Abrashkin
机构
[1] National Research University Higher School of Economics,Federal Research Center
[2] Institute of Applied Physics of the Russian Academy of Sciences,undefined
来源
关键词
Water waves; Vorticity; Lagrangian variables; 76B15; 76 B47;
D O I
暂无
中图分类号
学科分类号
摘要
Propagation of periodic stationary weakly vortical gravitational waves on the free water surface is considered. Similar wave motion was studied by Gouyon (Ann de la Fac des Sci de l’Université de Toulouse Sér 4(22):1–55, 1958) in linear and quadratic approximations in small parameter of the wave’s steepness ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} for the deep water conditions. In this paper this result is considered for the water of finite depth. Contrary to Gouyon who used the Euler approach a study of wave’s motion is performed here basing on the method of the modified Lagrangian coordinates. The wave’s vorticity Ω is specified as a series in the small parameter of steepness ε in the form: Ω=∑n=1∞εn·Ωnb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =\sum_{n=1}^{\infty }{\varepsilon }^{n}\cdot {\Omega }_{n}\left(b\right)$$\end{document}, where Ωn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }_{n}$$\end{document} are arbitrary functions of the vertical Lagrangian coordinate b. Explicit expressions for the coordinates of the liquid particle trajectories and pressure distribution are obtained for the first two orders of perturbation theory. The nonlinear proportional to ε correction to the wave velocity is determined.
引用
收藏
页码:717 / 732
页数:15
相关论文
共 50 条
  • [1] Gouyon waves in water of finite depth
    Abrashkin, A. A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 717 - 732
  • [2] The spectrum of finite depth water waves
    Akers, Benjamin
    Nicholls, David P.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2014, 46 : 181 - 189
  • [3] Bichromatic water waves in finite depth
    Madsen, PA
    Fuhrman, DR
    [J]. TOPICAL PROBLEMS OF NONLINEAR WAVE PHYSICS, 2006, 5975
  • [4] CRESCENT WAVES ON FINITE WATER DEPTH
    Zou, Zhili
    Zhou, Yalong
    Yan, Kai
    [J]. PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 5, 2013,
  • [5] Partially reflected waves in water of finite depth
    Li, Meng-Syue
    Hsu, Hung-Chu
    Chen, Yang-Yih
    Zou, Qingping
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [7] KAM for gravity water waves in finite depth
    Baldi, Pietro
    Berti, Massimiliano
    Haus, Emanuele
    Montalto, Riccardo
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) : 215 - 236
  • [8] THE FORM OF STANDING WAVES ON FINITE DEPTH WATER
    MERCER, GN
    ROBERTS, AJ
    [J]. WAVE MOTION, 1994, 19 (03) : 233 - 244
  • [9] Viscous ship waves on water of finite depth
    Chan, AT
    Chwang, AT
    [J]. ENGINEERING MECHANICS: PROCEEDINGS OF THE 11TH CONFERENCE, VOLS 1 AND 2, 1996, : 515 - 518
  • [10] On focusing and defocusing of waves in finite water depth
    Teigen, P.
    [J]. PROCEEDINGS OF THE SEVENTEENTH (2007) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1- 4, PROCEEDINGS, 2007, : 1978 - 1986