A filter method for inverse nonlinear sideways heat equation

被引:0
|
作者
Nguyen Anh Triet
Donal O’Regan
Dumitru Baleanu
Nguyen Hoang Luc
Nguyen Can
机构
[1] Thu Dau Mot University,Faculty of Natural Sciences
[2] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[3] Cankaya University,Department of Mathematics
[4] Institute of Space Sciences,Department of Medical Research, China Medical University Hospital
[5] China Medical University,Institute of Research and Development
[6] Duy Tan University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[7] Ton Duc Thang University,undefined
关键词
Backward problem; Nonlinear heat equation; Ill-posed problem; Cauchy problem; Regularization method; Error estimate; 35K05; 35K99; 47J06; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a sideways heat equation with a nonlinear source in a bounded domain, in which the Cauchy data at x=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x = \mathcal {X}$\end{document} are given and the solution in 0≤x<X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \le x < \mathcal {X}$\end{document} is sought. The problem is severely ill-posed in the sense of Hadamard. Based on the fundamental solution to the sideways heat equation, we propose to solve this problem by the filter method of degree α, which generates a well-posed integral equation. Moreover, we show that its solution converges to the exact solution uniformly and strongly in Lp(ω,X;L2(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr {L}^{p}(\omega,\mathcal {X};\mathscr {L}^{2}(\mathbb {R}))$\end{document}, ω∈[0,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega\in [0,\mathcal {X})$\end{document} under a priori assumptions on the exact solution. The proposed regularized method is illustrated by numerical results in the final section.
引用
收藏
相关论文
共 50 条
  • [31] Wavelet and Fourier methods for solving the sideways heat equation
    Eldén, L
    Berntsson, F
    Reginska, T
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2187 - 2205
  • [32] A note on "Sideways heat equation and wavelets" and constant e*
    Fu, CL
    Qiu, CY
    Zhu, YB
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1125 - 1134
  • [33] Uniform Convergence of Wavelet Solution to the Sideways Heat Equation
    Wang, Jin Ru
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 1981 - 1992
  • [34] Sequential solution of the sideways heat equation by windowing of the data
    Berntsson, F
    [J]. INVERSE PROBLEMS IN ENGINEERING, 2003, 11 (02): : 91 - 103
  • [35] Uniform convergence of wavelet solution to the sideways heat equation
    Jin Ru Wang
    [J]. Acta Mathematica Sinica, English Series, 2010, 26 : 1981 - 1992
  • [36] Discrete Group Method for Nonlinear Heat Equation
    Darania, Parviz
    Ebadian, Ali
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 329 - 336
  • [37] On some method for solving a nonlinear heat equation
    Rubina, L. I.
    Ul'yanov, O. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (05) : 872 - 881
  • [38] SOLUTION OF A NONLINEAR HEAT EQUATION BY PICARS METHOD
    PROZOROVA, EV
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1977, (04): : 110 - 113
  • [39] On some method for solving a nonlinear heat equation
    L. I. Rubina
    O. N. Ul’yanov
    [J]. Siberian Mathematical Journal, 2012, 53 : 872 - 881
  • [40] A numerical method for nonlinear inverse heat conduction problem
    Qian, Ai-lin
    Wang, Guangfu
    [J]. PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (ICAISE 2013), 2013, 37 : 132 - 136