A filter method for inverse nonlinear sideways heat equation

被引:0
|
作者
Nguyen Anh Triet
Donal O’Regan
Dumitru Baleanu
Nguyen Hoang Luc
Nguyen Can
机构
[1] Thu Dau Mot University,Faculty of Natural Sciences
[2] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[3] Cankaya University,Department of Mathematics
[4] Institute of Space Sciences,Department of Medical Research, China Medical University Hospital
[5] China Medical University,Institute of Research and Development
[6] Duy Tan University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[7] Ton Duc Thang University,undefined
关键词
Backward problem; Nonlinear heat equation; Ill-posed problem; Cauchy problem; Regularization method; Error estimate; 35K05; 35K99; 47J06; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a sideways heat equation with a nonlinear source in a bounded domain, in which the Cauchy data at x=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x = \mathcal {X}$\end{document} are given and the solution in 0≤x<X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \le x < \mathcal {X}$\end{document} is sought. The problem is severely ill-posed in the sense of Hadamard. Based on the fundamental solution to the sideways heat equation, we propose to solve this problem by the filter method of degree α, which generates a well-posed integral equation. Moreover, we show that its solution converges to the exact solution uniformly and strongly in Lp(ω,X;L2(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr {L}^{p}(\omega,\mathcal {X};\mathscr {L}^{2}(\mathbb {R}))$\end{document}, ω∈[0,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega\in [0,\mathcal {X})$\end{document} under a priori assumptions on the exact solution. The proposed regularized method is illustrated by numerical results in the final section.
引用
收藏
相关论文
共 50 条