Fast Solution of 3D-Elasticity Problem of a Planar Crack of Arbitrary Shape

被引:0
|
作者
S. K. Kanaun
机构
[1] Instituto Tecnológico y de Estudios Superiores de Monterrey,Departamento de Ingeniería Mecánica
来源
关键词
Crack; Fast Fourier Transform; Effective elastic properties;
D O I
暂无
中图分类号
学科分类号
摘要
A planar crack of an arbitrary shape in a homogeneous elastic medium is considered. The problem is reduced to integral equation for the crack opening vector. Its numerical solution utilizes Gaussian approximating functions that drastically simplify construction of the matrix of a linear algebraic system of the discretized problem. For regular grids of approximating nodes, this matrix turns out to have the Teoplitz structure. It allows one to use the Fast Fourier Transform algorithms for calculation of the matrix-vector products in the process of iterative solution of the discretized problem. The method is applied to a crack bounded by the curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x^{2p}_{1} + x^{2p}_{2}\leq 1}$$\end{document} for 0.2 ≤ p ≤ 4. The contribution of a crack to the overall effective elastic constants is calculated.
引用
收藏
页码:435 / 442
页数:7
相关论文
共 50 条
  • [31] A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains
    Betsch, P
    Gruttmann, F
    Stein, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 130 (1-2) : 57 - 79
  • [32] An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape
    Li, Hongyun
    Yang, Jianda
    Li, Zhonghua
    ENGINEERING FRACTURE MECHANICS, 2014, 116 : 190 - 196
  • [33] A Coupling Strategy of FEM and BEM for the Solution of a 3D Industrial Crack Problem
    Njiwa, Richard Kouitat
    Niane, Ngadia Taha
    Frey, Jeremy
    Schwartz, Martin
    Bristiel, Philippe
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2015, 16 (02): : 112 - 120
  • [34] Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory
    Yinan Zhao
    Zohre Moradi
    Mohsen Davoudi
    Jinwu Zhuang
    Engineering with Computers, 2022, 38 : 939 - 961
  • [35] Integral representation for the solution of a crack problem under stretching pressure in plane asymmetric elasticity
    Shmoylova, E.
    Potapenko, S.
    Rothenburg, L.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 247 - +
  • [36] Scattering of monochromatic longitudinal waves on a planar crack of arbitrary shape in a fluid-saturated poroelastic medium
    Levin, V.
    Kanaun, S.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2015, 25 (02) : 170 - 196
  • [37] Existence of the solution to electromagnetic wave scattering problem for an impedance body of an arbitrary shape
    Ramm, Alexander G.
    Schechter, Martin
    APPLIED MATHEMATICS LETTERS, 2015, 41 : 52 - 55
  • [38] Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory
    Zhao, Yinan
    Moradi, Zohre
    Davoudi, Mohsen
    Zhuang, Jinwu
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 2) : 939 - 961
  • [39] Fast direct solution algorithm for electromagnetic scattering from 3D planar and quasi-planar geometries
    Gurel, L
    Chew, WC
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 64 - 67
  • [40] Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded body
    Bui, HD
    Constantinescu, A
    Maigre, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (10): : 971 - 976