On the Braid Group Action on Exceptional Sequences for Weighted Projective Lines

被引:0
|
作者
Edson Ribeiro Alvares
Eduardo Nascimento Marcos
Hagen Meltzer
机构
[1] Departamento de Matemática Universidade Federal do Parana,Departamento de Matemática , IME
[2] Universidade de Sao Paulo Brazil,Instytut Matematyki
[3] Uniwersytet Szczeciński,undefined
来源
Algebras and Representation Theory | 2024年 / 27卷
关键词
Braid group; Exceptional sheaf; Exceptional sequence; Weighted projective line; Tilting sheaf; Tilting complex; Strong global dimension; Grothendieck group; Diophantine equation; Primary 14H05; Secondary 16G20; 16G99;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new and intrinsic proof of the transitivity of the braid group action on the set of full exceptional sequences of coherent sheaves on a weighted projective line. We do not use the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an application we prove that the strongest global dimension of the category of coherent sheaves on a weighted projective line X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {X}$$\end{document} does not depend on the parameters of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {X}$$\end{document}. Finally we prove that the determinant of the matrix obtained by taking the values of nZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-linear functions defined on the Grothendieck group K0(X)≃Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{K}_0(\mathbb {X}) \simeq \mathbb {Z}^n $$\end{document} of the elements of a full exceptional sequence is an invariant, up to sign.
引用
收藏
页码:897 / 909
页数:12
相关论文
共 50 条
  • [21] Kac's Theorem for weighted projective lines
    Crawley-Boevey, William
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) : 1331 - 1345
  • [22] Weighted projective lines and rational surface singularities
    Iyama, Osamu
    Wemyss, Michael
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2020, 3
  • [23] The braid group action on quantum queer superalgebra
    Chen, Jianmin
    Li, Zhenhua
    Zhu, Hongying
    JOURNAL OF ALGEBRA, 2025, 666 : 169 - 212
  • [24] BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS
    BECK, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) : 555 - 568
  • [25] ISOTROPY SUBGROUP OF HURWITZ ACTION OF THE 3-BRAID GROUP ON THE BRAID SYSTEMS
    Yaguchi, Yoshiro
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (07) : 1021 - 1030
  • [26] Complex Lie algebras corresponding to weighted projective lines
    Dou, Rujing
    Sheng, Jie
    Xiao, Jie
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 629 - 639
  • [27] Recursion Formulas on Hall Numbers for Weighted Projective Lines
    Xiaofeng Zhang
    Frontiers of Mathematics, 2023, 18 : 1157 - 1166
  • [28] Complex Lie algebras corresponding to weighted projective lines
    Rujing Dou
    Jie Sheng
    Jie Xiao
    Frontiers of Mathematics in China, 2011, 6 : 629 - 639
  • [29] Monadicity Theorem and Weighted Projective Lines of Tubular Type
    Chen, Jianmin
    Chen, Xiao-Wu
    Zhou, Zhenqiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13324 - 13359
  • [30] Recursion Formulas on Hall Numbers for Weighted Projective Lines
    Zhang, Xiaofeng
    FRONTIERS OF MATHEMATICS, 2023, 18 (05): : 1157 - 1166