On the Isolated Points of the Spectrum of Paranormal Operators

被引:0
|
作者
Atsushi Uchiyama
机构
[1] Sendai National College of Technology,
来源
关键词
Primary 47A10; Secondary 47B20; Riesz idempotent; paranormal operator;
D O I
暂无
中图分类号
学科分类号
摘要
For paranormal operator T on a separable complex Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H},$$\end{document} we show that (1) Weyl’s theorem holds for T, i.e., σ(T) \ w(T) = π00(T) and (2) every Riesz idempotent E with respect to a non-zero isolated point λ of σ(T) is self-adjoint (i.e., it is an orthogonal projection) and satisfies that ranE = ker(T − λ) = ker(T − λ)*.
引用
收藏
页码:145 / 151
页数:6
相关论文
共 50 条
  • [21] REGULAR POINTS, SPECTRUM AND EIGENFUNCTIONS OF LINEAR OPERATORS
    KACHUROV.RI
    DOKLADY AKADEMII NAUK SSSR, 1969, 188 (02): : 274 - &
  • [22] On the number of negative spectrum points of elliptic operators
    Guseinov R.V.
    Journal of Mathematical Sciences, 2009, 163 (1) : 41 - 45
  • [23] On the number of points of the negative spectrum for quasielliptic operators
    R. V. Guseinov
    Russian Journal of Mathematical Physics, 2008, 15 : 316 - 319
  • [24] On the number of points of the negative spectrum for quasielliptic operators
    Guseinov, R. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2008, 15 (03) : 316 - 319
  • [25] A NOTE ON *-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS
    Tanahashi, Kotoro
    Uchiyama, Atsushi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 357 - 371
  • [26] ON n-*-PARANORMAL OPERATORS
    Rashid, Mohammad H. M.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (03): : 549 - 565
  • [27] PROJECTIONS AND ISOLATED POINTS OF PARTS OF THE SPECTRUM
    Aiena, Pietro
    Triolo, Salvatore
    ADVANCES IN OPERATOR THEORY, 2018, 3 (04): : 868 - 880
  • [28] ISOLATED POINTS IN MINIMAL SPECTRUM OF RING
    NASTASES.C
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (05): : 677 - 685
  • [29] Characterization of closed n-paranormal and n∗-paranormal operators
    Mecheri, Salah
    Bakir, Aissa Nasli
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (1-2): : 219 - 230
  • [30] ON BIFURCATION OF NOETHER POINTS IN DISCRETE SPECTRUM OF LINEAR OPERATORS
    Rakhimov, D. G.
    EURASIAN MATHEMATICAL JOURNAL, 2015, 6 (02): : 75 - 81