Singular sets of surfaces

被引:0
|
作者
I. G. Tsar’kov
机构
[1] Moscow State University,Department of Mechanics and Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Sets of values of the metric projection for an approximatively compact subset of Hilbert space are studied. The results obtained in this way are used to study the geometry of hypersurfaces in ℝn and their singular sets.
引用
收藏
页码:263 / 271
页数:8
相关论文
共 50 条
  • [41] REMOVABILITY OF SINGULAR SETS OF HARMONIC MAPS
    MOU, LB
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (03) : 199 - 217
  • [42] Universal Singular Sets in the Calculus of Variations
    Csornyei, Marianna
    Kirchheim, Bernd
    O'Neil, Toby C.
    Preiss, David
    Winter, Steffen
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 190 (03) : 371 - 424
  • [43] A note on the inclusion sets for singular values
    He, Jun
    Liu, Yan-Min
    Tian, Jun-Kang
    Ren, Ze-Rong
    AIMS MATHEMATICS, 2017, 2 (02): : 315 - 321
  • [44] On the volume of singular-hyperbolic sets
    Alves, J. F.
    Araujo, V.
    Pacifico, M. J.
    Pinheiro, V.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (03): : 249 - 267
  • [45] New inclusion sets for singular values
    He, Jun
    Liu, Yan-Min
    Tian, Jun-Kang
    Ren, Ze-Rong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [46] Riemannian geometry of conical singular sets
    Liu, ZD
    Shen, ZM
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (01) : 29 - 62
  • [47] Universal Singular Sets in the Calculus of Variations
    Marianna Csörnyei
    Bernd Kirchheim
    Toby C. O’Neil
    David Preiss
    Steffen Winter
    Archive for Rational Mechanics and Analysis, 2008, 190 : 371 - 424
  • [48] Riemannian Geometry of Conical Singular Sets
    Zhong-Dong Liu
    Zhongmin Shen
    Annals of Global Analysis and Geometry, 1998, 16 : 29 - 62
  • [49] New inclusion sets for singular values
    Jun He
    Yan-Min Liu
    Jun-Kang Tian
    Ze-Rong Ren
    Journal of Inequalities and Applications, 2017
  • [50] Singular sets of Lebesgue integrable functions
    Zubrinic, D
    CHAOS SOLITONS & FRACTALS, 2004, 21 (05) : 1281 - 1287