The interior gradient estimate of prescribed Hessian quotient curvature equations

被引:0
|
作者
Chuanqiang Chen
Lu Xu
Dekai Zhang
机构
[1] Zhejiang University of Technology,Department of Applied Mathematics
[2] Hunan University,College of Mathematics and Econometrics
[3] University of Science and Technology of China,School of Mathematical Sciences
来源
manuscripta mathematica | 2017年 / 153卷
关键词
35J60; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the interior gradient estimate of k-admissible solutions of prescribed Hessian quotient curvature equations σk(aij)σl(aij)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\sigma _k (a_{ij})}{\sigma _l (a_{ij})} = f(x)$$\end{document} with 0≤l<k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le l < k \le n$$\end{document}. As an application, we get a Liouville type theorem.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 50 条
  • [21] An interior gradient estimate for the mean curvature equation of Killing graphs and applications
    M. Dajczer
    J. H. de Lira
    J. Ripoll
    [J]. Journal d'Analyse Mathématique, 2016, 129 : 91 - 103
  • [22] Interior gradient estimate for 1-D anisotropic curvature flow
    Nagase, Yuko
    Tonegawa, Yoshihiro
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2005, 23 (1-2): : 93 - 98
  • [23] AN INTERIOR GRADIENT ESTIMATE FOR THE MEAN CURVATURE EQUATION OF KILLING GRAPHS AND APPLICATIONS
    Dajczer, M.
    De Lira, J. H.
    Ripoll, J.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 129 : 91 - 103
  • [24] ON THE CURVATURE ESTIMATES FOR HESSIAN EQUATIONS
    Ren, Changyu
    Wang, Zhizhang
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (05) : 1281 - 1315
  • [25] Interior Hessian estimates for a class of Hessian type equations
    Chen, Chuanqiang
    Dong, Weisong
    Han, Fei
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [26] Interior Hessian estimates for a class of Hessian type equations
    Chuanqiang Chen
    Weisong Dong
    Fei Han
    [J]. Calculus of Variations and Partial Differential Equations, 2023, 62
  • [27] On the Exterior Problem for Parabolic Hessian Quotient Equations
    Zhou, Ziwei
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (02): : 343 - 358
  • [28] The Neumann Problem for Parabolic Hessian Quotient Equations
    Chen, Chuan Qiang
    Ma, Xi Nan
    Zhang, De Kai
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (09) : 1313 - 1348
  • [29] The Neumann Problem for Parabolic Hessian Quotient Equations
    Chuan Qiang CHEN
    Xi Nan MA
    De Kai ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (09) : 1313 - 1348
  • [30] A class of Hessian quotient equations in Euclidean space
    Chen, Xiaojuan
    Tu, Qiang
    Xiang, Ni
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 11172 - 11194