The interior gradient estimate of prescribed Hessian quotient curvature equations

被引:0
|
作者
Chuanqiang Chen
Lu Xu
Dekai Zhang
机构
[1] Zhejiang University of Technology,Department of Applied Mathematics
[2] Hunan University,College of Mathematics and Econometrics
[3] University of Science and Technology of China,School of Mathematical Sciences
来源
manuscripta mathematica | 2017年 / 153卷
关键词
35J60; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the interior gradient estimate of k-admissible solutions of prescribed Hessian quotient curvature equations σk(aij)σl(aij)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\sigma _k (a_{ij})}{\sigma _l (a_{ij})} = f(x)$$\end{document} with 0≤l<k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le l < k \le n$$\end{document}. As an application, we get a Liouville type theorem.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 50 条