On Supersets of Wavelet Sets

被引:0
|
作者
C. Viriyapong
S. Sumetkijakan
机构
[1] Chulalongkorn University,Department of Mathematics, Faculty of Science
来源
关键词
Wavelets; Wavelet sets; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Considering a single dyadic orthonormal wavelet ψ in L2(ℝ), it is still an open problem whether the support of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{\psi}$\end{document} always contains a wavelet set. As far as we know, the only result in this direction is that if the Fourier support of a wavelet function is “small” then it is either a wavelet set or a union of two wavelet sets. Without assuming that a set S is the Fourier support of a wavelet, we obtain some necessary conditions and some sufficient conditions for a “small” set S to contain a wavelet set. The main results, which are in terms of the relationship between two explicitly constructed subsets A and B of S and two subsets T2 and D2 of S intersecting itself exactly twice translationally and dilationally respectively, are (1) if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\cup B\not\subseteq T_{2}\cap D_{2}$\end{document} then S does not contain a wavelet set; and (2) if A∪B⊆T2∩D2 then every wavelet subset of S must be in S∖(A∪B) and if S∖(A∪B) satisfies a “weak” condition then there exists a wavelet subset of S∖(A∪B). In particular, if the set S∖(A∪B) is of the right size then it must be a wavelet set.
引用
收藏
页码:173 / 193
页数:20
相关论文
共 50 条
  • [31] OPPORTUNISTIC ALGORITHMS FOR ELIMINATING SUPERSETS
    PRITCHARD, P
    ACTA INFORMATICA, 1991, 28 (08) : 733 - 754
  • [32] Frame scaling function sets and frame wavelet sets in Rd
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2483 - 2490
  • [33] Effect of cadence on volume and myoelectric activity during agonist-antagonist paired sets (supersets) in the lower body
    Antunes, Lara
    Bezerra, Ewertton de S.
    Sakugawa, Raphael L.
    Dal Pupo, Juliano
    SPORTS BIOMECHANICS, 2018, 17 (04) : 502
  • [34] Wavelet sets in R-n
    Dai, XD
    Larson, DR
    Speegle, DM
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (04) : 451 - 456
  • [35] On Normalized Tight Frame Wavelet Sets
    Srivastava, Swati
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 127 - 135
  • [36] Confidence sets for nonparametric wavelet regression
    Genovese, CR
    Wasserman, L
    ANNALS OF STATISTICS, 2005, 33 (02): : 698 - 729
  • [37] Pathconnectedness of Wavelet Sets in Reducing Subspaces
    Srivastava, Swati
    Maury, Saurabh Chandra
    Singh, Reshma
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (03): : 479 - 485
  • [38] On the Use of Covariate Supersets for Identification Conditions
    Zivich, Paul N.
    Shook-Sa, Bonnie E.
    Edwards, Jessie K.
    Westreich, Daniel
    Cole, Stephen R.
    EPIDEMIOLOGY, 2022, 33 (04) : 559 - 562
  • [39] Efficacy of Supersets Versus Traditional Sets in Whole-Body Multiple-Joint Resistance Training: A Randomized Controlled Trial
    Iversen, Vegard Moe
    Eide, Vemund Bakken
    Unhjem, Bjornar Jakobsen
    Fimland, Marius Steiro
    JOURNAL OF STRENGTH AND CONDITIONING RESEARCH, 2024, 38 (08) : 1372 - 1378
  • [40] Wavelet based registration and compression of sets of images
    Sharman, R
    Tyler, JM
    Pianykh, OS
    WAVELET APPLICATIONS IV, 1997, 3078 : 497 - 505